Sunday, September 7, 2025

Basic vs. Python: Circle Inscribed in Circle [HP 71B, Casio fx-CG 100]

Basic vs. Python: Circle Inscribed in Circle



Calculators Used:

Basic: HP 71B

Python: Casio fx-CG 100


Introduction






Let a rectangle with sides A and B be inscribed in a circle. The circle has a radius R. Let the line segments with the length A have a corresponding angle Θ. If we are given R and Θ, we can use the chord length formula to calculate A and B.


The angle corresponding with side B can be determined as:

φ: angle corresponding with side B


φ + Θ + φ + Θ = 360°

2 × (φ + Θ) = 360°

φ + Θ = 180°

φ = 180° - Θ


Chord length:


A = 2 × R × sin(Θ/2)

B = 2 × R × sin(φ/2) = 2 × R × sin((180° - Θ)/2)


Knowing A and B, we can calculate the following:


Area of the rectangle = A × B

Area of the shaded area (circle – rectangle) = π × R^2 – A × B



Basic: HP 71B – INSCRECT


10 DESTROY R,A,B,C,D,T

15 DEGREES @ FIX 5

20 DISP “RECT. INSCR. CIRCLE” @ PAUSED

25 DISP “DEGREES MODE” @ WAIT 0.5

30 INPUT “RADIUS? “; R

35 INPUT “ANGLE-SIDE A? “; A


50 A = 2 * R * SIN(T/2)

55 B = 2 * R * SIN((180 – T)/2)

60 C = A * B

65 D = R^2 * PI – C


80 DISP “SIDE A = “, A @ PAUSE

85 DISP “SIDE B = “, B @ PAUSE

90 DISP “RECT ANGLE = “, C @ PAUSE

95 DISP “CIRC-RECT = “, D @ PAUSE

98 STD



Notes:

* FIX 5: Fix 5 display

* STD: Standard mode, floating point display

* DEGREES: Sets the HP 71B in degrees mode



Python: Casio fx-CG 100, insecrect.py



from math import *

print(“Rectangle Inscribed in a Circle”)

print(“Math module imported”)

r=eval(input(“Radius? “))

print(“Enter angle in degrees”)

t=eval(input(“Angle- A? “))

u=t*pi/180

a=2*r*sin(u/2)

b=2*r*sin((pi-u)/2)

c=a*b

d=r**2*pi-c

print(“A: {0.5f}”.format(a))

print(“B: {0.5f}”.format(b))

print(“Rect. Area: {0.5f}”.format(c))

print(“CIRC-AREA: {0:.5f}”.format(d))



Notes:

* Since the math module is used, this script can be used in any calculator with Python.

* Python’s angle mode is always in radians.



Examples



Example 1:

Inputs:

r = 10

Θ = 30°

Outputs:

a ≈ 5.17638

b ≈ 19.31852

c = 100

d ≈ 214.15927



Example 2:

Inputs:

r = 20

Θ = 80°

Outputs:

a ≈ 25.71150

b ≈ 30.64178

c ≈ 787.84620

d ≈ 468.79086



Example 3:

Inputs:

r = 20

Θ = 90°

Outputs:

a ≈ 35.35534

b ≈ 35.35534

c = 1250

d ≈ 713.49541



Eddie


All original content copyright, © 2011-2025. Edward Shore. Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited. This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.


The author does not use AI engines and never will.

Saturday, September 6, 2025

HP 71B Programs: September 2025

HP 71B Programs: September 2025


One of my favorite calculators/pocket calculators of all time is the HP 71B.



ADDMOD: (a + b) mod n = a mod n + b mod n


10 DESTROY A, B, N

20 DISP “(A+B) MOD N” @ WAIT .5

30 INPUT “A? “; A

40 INPUT “B? “; B

50 INPUT “C? “; C

60 S = MOD(A, N) + MOD(B, N)

70 S = MOD(S, N)

80 DISP “SUM = “; S


MULTMOD: (a * b) mod n = a mod n * b mod n


10 DESTROY A, B, N

20 DISP “(A*B) MOD N” @ WAIT .5

30 INPUT “A? “; A

40 INPUT “B? “; B

50 INPUT “N? “; N

60 P = MOD(A, N) * MOD(B, N)

70 P = MOD(P, N)

80 DISP “PRODUCT = “; P


Examples:

A

630

48

15

B

320

99

47

N

700

15

7

SUM:

250

12

6

PRODUCT:

0

12

5



GABLE: Area of a Gable Roof


10 DESTROY P, S, L

20 DEGREES

30 INPUT “PITCH (IN.)? “; P

40 INPUT “SPAN (FT.)? “; S

50 INPUT “LENGTH (FT.)? “; L

60 A = 2 * S * L / COS(ATAN(P/12))

70 DISP “AREA = “; A; “ FT^2”


Input: Pitch (P)

6”

3”

4”

Input: Span (S)

110” (110/12 ft)

5’ 8” (5 + 8/12 ft)

15 ft

Input: Length (L)

100” (100/12 ft)

10’

10 ft

Output: Area (A)

170.81074828 ft^2

116.821326059 ft^2

316.227766017 ft^2



INTENSE: Light Intensity of a Spherical or a Cylindrical Light Source


intensity = power / surface area

intensity (W/m^2), power (W), surface area (m^2)

Surface area: sphere = 4 * π * r^2, cylinder = 2 * π * (r * h + r^2)


10 DESTROY P, K$, R, H

20 DISP “INTENSITY OF LIGHT!” @ WAIT .5

30 INPUT “POWER (W)? “; P


40 DISP “1. SPHERE 2. CYLINDER”

50 DELAY 0,0

60 K$ = KEY$

70 IF K$ = “1” OR K$ = “S” THEN GOTO 100

80 IF K$ = “2” OR K$ = “C” THEN GOTO 200

90 GOTO 40


100 INPUT “RADIUS (M)? “; R

110 A = 4 * PI * R^2

120 GOTO 300


200 INPUT “RADIUS (M)? “; R

210 INPUT “HEIGHT (M)? “; H

220 A = 2 * PI * (R * H + R^2)

230 GOTO 300


300 I = P / A

310 DISP I; “W/M^2”


Examples:


Sphere: r = 4 m, Power = 60 W: Intensity = .298415518297 W/M^2


Cylinder: r = 1.25 m, h = 0.75 m, Power = 70 W; Intensity = 4.45633840656 W/M^2



SIMPLE: Simple Interest – Banker’s Rule


interest = amount * rate% / 100 * #days / 360

final = principal + interest (final, maturity value)


10 DESTROY P, R, I, M

20 DISP “SIMPLE INTEREST” @ WAIT .5

30 INPUT “AMT? “; P

40 INPUT “RATE%? “; R

50 INPUT “# DAYS? “; D

60 I = P * R * D / 360 / 100

70 M = P + I

80 IMAGE K, M10D.2D

90 DISP USING 80; “INT.=”, I @ PAUSE

100 DISP USING 80; “FINAL=”, M


Notes:


* When the HP 71B is in pause, press [ f ] [ + ] to continue (CONT).

* To stop execution, press [ ON ] (ATTN).

* IMAGE K, M10D.2D: display “prompt string”, number rounded to 2 decimal places. The number is right-justified, make the prompt string 7 characters or less to fit both the string and number on the screen.


Examples


Input: Amount

1500

2000

2800

Input: Rate %

4.00%

8.00%

6.65%

Input: # Days

180

90

60

Output: Interest

30

40

31.03

Output: Final

1530

2040

2831.03



AIRSOUND: Speed of Sound in Air


S = 331.5 + .606 * T

S = speed of sound in air, m/s

T = temperature in °C


10 DESTROY K$, S, T

20 DISP “SPEED OF SOUND IN AIR” @ WAIT .5

30 DISP “SOLVE FOR…” @ WAIT .5

40 DISP “1. SPEED 2. TEMP”

60 K$ = KEY$

70 IF K$=”1” OR K$=”S” THEN GOTO 100

80 IF K$=”2” OR K$=”T” THEN GOTO 200

90 GOTO 40


100 INPUT “TEMP (°C)? “; T

110 S = 331.5 + .606 * T

120 DISP “S=”; S; “ M/S”

130 END


200 INPUT “SPEED (M/S)? “; S

210 T = (S- 331.5) / .606

220 DISP “T=”; T ; “°C”

230 END



Examples:


Input: T = 74 °F = (32 + 1/3) °C

Output: S = 345.64 m/s

Input: S = 350 m/s

Output: T = 30.5280528053 °C

Input: T = -8.5 °C

Output: S = 326.349 m/s

Input: S = 382 m/s

Output: T = 83.3333333333 °C



Eddie


All original content copyright, © 2011-2025. Edward Shore. Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited. This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.

The author does not use AI engines and never will.