Simple Right Triangle Solver: Casio Classpad, TI-84 Plus
Variables:
x = length of the base (run)
y = length of the height (rise)
d = length of the diagonal
θ = angle (opposite of side y)
Casio Classpad (fx-CP400):
TRIANGLE
‘Setup
‘Set Decimal answers
SetDecimal
‘Set Degrees
SetDegree
‘Local \\ I use the x and y from the keyboard in combined
variable names
Local sx,sy,sd,sθ \\ set up strings to join
Local ch,x,y,d,θ
Local st1,st2,st3,st4,st
ClrText
“x= “ ⇒ sx
“y= “ ⇒ sy
“d= “ ⇒ sd
“θ= “ ⇒ sθ
‘Menu \\ set up output screen text
Print “Triangle Solver”, ColorBlue \\ color only applies for fx-CP400
Print “ “ \\ to
create a blank line
Print “Known Variables”, ColorBlue
Print “θ is opposite of y”
Print “1. x, y”
Print “2. x, d”
Print “3. y, d”
Print “4. θ, x”
Print “5. θ, y”
Print “6. θ, d”
Input ch, “1. x, y 2. x, d
3. y, d 4. θ, x 5. θ, y 6. θ, d”,”Known Variables”
‘Choice 1
If ch=1
Then
Input x, “x=”
Input y, “y=”
√(x^2 + y^2)⇒d
tan^-1(y/x)⇒θ
ExpToStr d,st1 \\
expr to string
ExpToStr θ,st2
StrJoin sd,st1,st3 \\
join strings
StrJoin sθ,st2,st4
IfEnd
‘Choice 2
If ch=2
Then
Input x, “x=”
Input d, “d=”
√(d^2 – x^2)⇒y
tan^-1(y/x)⇒θ
ExpToStr y,st1
ExpToStr θ,st2
StrJoin sy,st1,st3
StrJoin sθ,st2,st4
IfEnd
‘Choice 3
If ch=3
Then
Input y, “y=”
Input d, “d=”
√(d^2 – y^2)⇒x
tan^-1(y/x)⇒θ
ExpToStr x,st1
ExpToStr θ,st2
StrJoin sx,st1,st3
StrJoin sθ,st2,st4
IfEnd
‘Choice 4
If ch=4
Then
Input θ, “θ=”
Input x, “x=”
x/cos(θ)⇒d
x*tan(θ)⇒y
ExpToStr d,st1
ExpToStr y,st2
StrJoin sd,st1,st3
StrJoin sy,st2,st4
IfEnd
‘Choice 5
If ch=5
Then
Input θ, “θ=”
Input y, “y=”
y/sin(θ)⇒d
y/tan(θ)⇒x
ExpToStr d,st1
ExpToStr x,st2
StrJoin sd,st1,st3
StrJoin sx,st2,st4
IfEnd
‘Choice 6
If ch=6
Then
Input θ, “θ=”
Input d, “d=”
d*cos(θ)⇒x
d*sin(θ)⇒y
ExpToStr x,st1
ExpToStr y,st2
StrJoin sx,st1,st3
StrJoin sy,st2,st4
IfEnd
‘Ending
StrJoin st3,”; “,st
StrJoin st,st4,st
Message st,”Results:”
SetStandard
TI-84 Plus (TI-84 Plus CE):
TRIANGLE
Degree
Menu("2 KNOWN
VAR","X,Y",1,"X,D",2,"Y,D",3,"θ,X",4,"θ,Y",5,"θ,D",6)
Lbl 1
Prompt X,Y
√(X²+Y²)→D
tan^-1(Y/X)→θ
Disp "D=",D
Disp "θ=",θ
Stop
Lbl 2
Prompt X,D
√(D²-X²)→Y
tan^-1(Y/X)→θ
Disp "Y=",Y
Disp "θ=",θ
Stop
Lbl 3
Prompt Y,D
√(D²-Y²)→X
tan^-1(Y/X)→θ
Disp "X=",X
Disp "θ=",θ
Stop
Lbl 4
Prompt θ,X
X/cos(θ)→D
X*tan(θ)→Y
Disp "D=",D
Disp "Y=",Y
Stop
Lbl 5
Prompt θ,Y
Y/sin(θ)→D
Y/tan(θ)→X
Disp "D=",D
Disp "X=",X
Stop
Lbl 6
Prompt D,θ
D*cos(θ)→X
D*sin(θ)→Y
Disp "X=",X
Disp "Y=",Y
Stop
Examples:
Case 1: x = 3.6, y =
4.8; results d = 6, θ ≈ 53.13010°
Case 2: x = 5, d = 10; result y ≈ 8.66025, θ = 60°
Case 3: y = 4, d = 10; result x ≈ 9.16515, θ ≈ 23.57818°
Case 4: θ = 30°, x = 8; result d ≈ 9.23760, y ≈ 4.61880
Case 5: θ = 42°, y = 6; result d ≈ 8.96686, x ≈ 6.66368
Case 6: θ = 37.6°, d = 8.88; result x ≈ 7.03553, y ≈ 5.41809
This blog is property of Edward Shore, 2016