Sunday, September 8, 2019

TI-84 Plus CE and Casio fx-5800P: Lateral Pressure of Cohesionless Soils

TI-84 Plus CE and Casio fx-5800P:  Lateral Pressure of Cohesionless Soils

Introduction

The following equations calculates the total thrust of soil against a wall.  The soil is assumed to be cohesionless, free running soil.  This applies to soils like sand and gravel, but not clay.

SI units (meters, seconds, kilograms) are assumed in these calculations.

Inputs:

Φ = angle of internal friction of soil.  For cohesionless soils, such as medium and coarse sands, the angle of internal friction typically ranges from 30° to 35°.  The program assigns Φ to the variable I.

H = the height of the wall (m).

γ = unit weight of soil (kg/m^3).  The program assigns γ to W.

Outputs:

K_A = pressure coefficient (unit-less).  The program assigns K_A to K.

P = total thrust of the soil (kg/m) of the wall.

Equations:

K_A = (tan(45° - Φ/2))^2

P = 1/2 * γ * H^2 * K_A  (kg/m)

TI-84 Plus CE Program SOILPRES

(this program needs to be typed in)

Degree
Disp "LATERAL PRESSURE","SAND/GRAVEL","ANGLE INTERNAL"
Input "FRICTION: ",I
tan(45-I/2)²→K
Disp "WALL HEIGHT"
Input "(M): ",H
Disp "SOIL WEIGHT"
Input "(KG/M³): ",W
0.5*W*H²*K→P
Disp "PRESSURE COEF: ",K,"SOIL THRUST: ",P

Casio fx-5800P Program SOILPRESSURE

Deg
"LATERAL PRESSURE"
"SAND OR GRAVEL"
"ANGLE INTERAL"
"FRICTION: "?→I
(tan(45-I÷2))²→K
"WALL HEIGHT"
"(M): "?→H
"SOIL HEIGHT"
"(KG÷M^(3)): "?→W
0.5*W*H²*K→P
"PRESSURE COEF:"
K⊿
"SOIL THRUST:"
P

Example

Input:
Φ = I = 37°
H = 15 m
γ = W = 0.64 kg/m^3

Output:

K_A = K = 0.2485836199
P = 17.89802063 (kg/m)

Source:

Hicks, Tyler P.E.  Civil Engineering Formulas 2nd Ed.   McGraw Hill: New York.  2000.   ISBN 978-0-07-161470-2

Eddie

All original content copyright, © 2011-2019.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.