HP Prime: Hyperbolic CAS Transformations
Introduction
These CAS transforms some expressions involving hyperbolic functions, mainly sinh (hyperbolic sine) and cosh (hyperbolic cosine).
Let ϕ and Ω be any algebraic expression, real number, or complex number. These commands are meant to work in CAS mode.
Exponential Definitions
sinhexp
sinhexp(ϕ) = (e^(ϕ) - e^(-ϕ)) / 2 = ((e^ϕ)^2 - 1) / (2 * e^ϕ)
#cas
sinhexp(f):=
BEGIN
RETURN (e^(f)-e^(−f))/2
END;
#end
coshexp
coshexp(ϕ) = (e^(ϕ) + e^(-ϕ)) / 2 = ((e^ϕ)^2 + 1) / (2 * e^ϕ)
#cas
coshexp(f):=
BEGIN
RETURN (e^(f)+e^(−f))/2
END;
#end
tanhexp
tanhexp(ϕ) = (e^(ϕ) - e^(-ϕ)) / (e^(ϕ) + e^(-ϕ))
#cas
tanhexp(f):=
BEGIN
RETURN (e^(f)-e^(−f))/
(e^(f)+e^(−f))
END;
#end
Adding Properties
addsinh
addsinh(ϕ + Ω) = sinh ϕ * cosh Ω + sinh Ω * cosh ϕ
#cas
addcosh(f,g):=
BEGIN
RETURN COSH(f)*COSH(g)+
SINH(f)*SINH(g);
END;
#end
addcosh
addcosh(ϕ + Ω) = csoh ϕ * cosh Ω + sinh Ω * sinh ϕ
#cas
addsinh(f,g):=
BEGIN
RETURN SINH(f)*COSH(g)+
COSH(f)*SINH(g);
END;
#end
addtanh
addtanh(ϕ + Ω) = (tanh ϕ + tanh Ω) / (1 + tanh ϕ * tanh Ω)
#cas
addtanh(f,g):=
BEGIN
RETURN (TANH(f)+TANH(g))/
(1+TANH(f)*TANH(g));
END;
#end
Squaring Properties
sqsinh
sqsinh(ϕ) = sinh^2 ϕ = 1/2 * cosh(2 * ϕ) - 1/2
#cas
sqsinh(f):=
BEGIN
RETURN COSH(2*f)/2-1/2;
END;
#end
sqcosh
sqcosh(ϕ) = cosh^2 ϕ = 1/2 * cosh(2 * ϕ) + 1/2
#cas
sqcosh(f):=
BEGIN
RETURN COSH(2*f)/2+1/2;
END;
#end
Product Properties
sinhsinh
sinhsinh(ϕ, Ω) = 1/2 * (cosh(ϕ + Ω) - cosh(ϕ - Ω))
#cas
sinhsinh(f,g):=
BEGIN
RETURN 1/2*(COSH(f+g)-
COSH(f-g));
END;
#end
coshcosh
coshcosh(ϕ, Ω) = 1/2 * (cosh(ϕ + Ω) + cosh(ϕ - Ω))
#cas
coshcosh(f,g):=
BEGIN
RETURN 1/2*(COSH(f+g)+
COSH(f-g));
END;
#end
sinhcosh
sinhcosh(ϕ, Ω) = 1/2 * (sinh(ϕ + Ω) + sinh(ϕ - Ω))
#cas
sinhcosh(f,g):=
BEGIN
RETURN 1/2*(SINH(f+g)+
SINH(f-g));
END;
#end
Source:
Spiegel, Murray R. and Seymour Lipschutz, John Liu. Schuam's Outlines: Mathematical Handbook of Formulas and Tables 5th Edition McGraw Hill: New York 2018 ISBN 978-1-260-01053-4
A little early start to our Thanksgiving feast,
Eddie
All original content copyright, © 2011-2019. Edward Shore. Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited. This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.
Introduction
These CAS transforms some expressions involving hyperbolic functions, mainly sinh (hyperbolic sine) and cosh (hyperbolic cosine).
Let ϕ and Ω be any algebraic expression, real number, or complex number. These commands are meant to work in CAS mode.
Exponential Definitions
sinhexp
sinhexp(ϕ) = (e^(ϕ) - e^(-ϕ)) / 2 = ((e^ϕ)^2 - 1) / (2 * e^ϕ)
#cas
sinhexp(f):=
BEGIN
RETURN (e^(f)-e^(−f))/2
END;
#end
coshexp
coshexp(ϕ) = (e^(ϕ) + e^(-ϕ)) / 2 = ((e^ϕ)^2 + 1) / (2 * e^ϕ)
#cas
coshexp(f):=
BEGIN
RETURN (e^(f)+e^(−f))/2
END;
#end
tanhexp
tanhexp(ϕ) = (e^(ϕ) - e^(-ϕ)) / (e^(ϕ) + e^(-ϕ))
#cas
tanhexp(f):=
BEGIN
RETURN (e^(f)-e^(−f))/
(e^(f)+e^(−f))
END;
#end
Adding Properties
addsinh
addsinh(ϕ + Ω) = sinh ϕ * cosh Ω + sinh Ω * cosh ϕ
#cas
addcosh(f,g):=
BEGIN
RETURN COSH(f)*COSH(g)+
SINH(f)*SINH(g);
END;
#end
addcosh
addcosh(ϕ + Ω) = csoh ϕ * cosh Ω + sinh Ω * sinh ϕ
#cas
addsinh(f,g):=
BEGIN
RETURN SINH(f)*COSH(g)+
COSH(f)*SINH(g);
END;
#end
addtanh
addtanh(ϕ + Ω) = (tanh ϕ + tanh Ω) / (1 + tanh ϕ * tanh Ω)
#cas
addtanh(f,g):=
BEGIN
RETURN (TANH(f)+TANH(g))/
(1+TANH(f)*TANH(g));
END;
#end
Squaring Properties
sqsinh
sqsinh(ϕ) = sinh^2 ϕ = 1/2 * cosh(2 * ϕ) - 1/2
#cas
sqsinh(f):=
BEGIN
RETURN COSH(2*f)/2-1/2;
END;
#end
sqcosh
sqcosh(ϕ) = cosh^2 ϕ = 1/2 * cosh(2 * ϕ) + 1/2
#cas
sqcosh(f):=
BEGIN
RETURN COSH(2*f)/2+1/2;
END;
#end
Product Properties
sinhsinh
sinhsinh(ϕ, Ω) = 1/2 * (cosh(ϕ + Ω) - cosh(ϕ - Ω))
#cas
sinhsinh(f,g):=
BEGIN
RETURN 1/2*(COSH(f+g)-
COSH(f-g));
END;
#end
coshcosh
coshcosh(ϕ, Ω) = 1/2 * (cosh(ϕ + Ω) + cosh(ϕ - Ω))
#cas
coshcosh(f,g):=
BEGIN
RETURN 1/2*(COSH(f+g)+
COSH(f-g));
END;
#end
sinhcosh
sinhcosh(ϕ, Ω) = 1/2 * (sinh(ϕ + Ω) + sinh(ϕ - Ω))
#cas
sinhcosh(f,g):=
BEGIN
RETURN 1/2*(SINH(f+g)+
SINH(f-g));
END;
#end
Source:
Spiegel, Murray R. and Seymour Lipschutz, John Liu. Schuam's Outlines: Mathematical Handbook of Formulas and Tables 5th Edition McGraw Hill: New York 2018 ISBN 978-1-260-01053-4
A little early start to our Thanksgiving feast,
Eddie
All original content copyright, © 2011-2019. Edward Shore. Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited. This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.