HP 15C: Quadratic Solver Using Solve and Flags
Introduction
This program solves the quadratic equation for real roots:
a x^2 + b x + c = 0
Instructions:
1. Key: a [ENTER], b [ENTER], c [ f ] [ A ] (enter coefficients into label A)
2. The first root is displayed.
3. Press [ R/S ] for the second root.
Registers Used:
R1 = a
R2 = b
R3 = c
R4 = root 1
R5 = root 2
R6 = abs((R1 + R2 + R3) ÷ 3), I use [-R6, R6] as my initial guesses.
Flag 0: used to adjust the equation to be solved
Equation 1: finding the first root: (a x^2 + b x + c) (flag 0 is set)
Equation 2: finding the first root: (a x^2 + b x + c) ÷ (x - root) (flag 0 is clear, this is a depressed equation)
When a function with multiple roots is present, we can take out roots already found by dividing f(x) by (x - root).
HP 15C Program: Quadratic Solver
Steps: 47, Bytes: 57
Code:
Step : Key Code : Key
001 : 42,21,11 : LBL A
002 : 44, 3 : STO 3
003 : 44, 6 : STO 6
004 : 33 : R↓
005 : 44, 2 : STO 2
006 : 44,40, 6 : STO+ 6
007 : 33 : R↓
008 : 44, 1 : STO 1
009 : 44,40, 6 : STO+ 6
010 : 45, 6 : RCL 6
011 : 3 : 3
012 : 10 : ÷
013 : 43,16 : ABS
014 : 44, 6 : STO 6
015 : 43, 4, 0 : SF 0
016 : 42,21, 0 : LBL 0
017 : 45, 6 : RCL 6
018 : 16 : CHS
019 : 45, 6 : RCL 6
020 : 42,10, 1 : SOLVE 1
021 : 43, 6, 0 : F? 0
022 : 22, 2 : GTO 2
023 : 22, 3 : GTO 3
024 : 42,21, 2 : LBL 2
025 : 44, 4 : STO 4
026 : 43, 5, 0 : CF 0
027 : 22, 0 : GTO 0
028 : 42,21, 1 : LBL 1
029 : 36 : ENTER
030 : 36 : ENTER
031 : 45,20, 1 : RCL× 1
032 : 45,40, 2 : RCL+ 2
033 : 20 : ×
034 : 45,40, 3 : RCL+ 3
035 : 43, 6, 0 : F? 0
036 : 43, 32 : RTN
037 : 34 : x<>y
038 : 45, 4 : RCL 4
039 : 30 : -
040 : 10 : ÷
041 : 43,32 : RTN
042 : 42,21, 3 : LBL 3
043 : 44, 5 : STO 5
044 : 45, 4 : RCL 4
045 : 31 : R/S
046 : 34 : x<>y
047 : 43, 32 : RTN
Examples
x^2 - 5 x - 24 = 0
a = 1
b = -5
c = -24
1 [ ENTER ] 5 [CHS] [ ENTER ] 24 [ CHS ] [ f ] [ A ]
Roots: 8 [ R/S ] -3 (x = 8, x= -3)
2 x^2 + 8 x - 2 = 0
a = 2
b = 8
c = -2
2 [ ENTER ] 8 [ ENTER ] 2 [ CHS ] [ f ] [ A ]
Roots: 0.2361 [ R/S ] -4.2361 (x ≈ 0.2361, x ≈ -4.2361)
Eddie
All original content copyright, © 2011-2023. Edward Shore. Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited. This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.