Sunday, July 13, 2025

fx-3900PV Programs: Finance Factors

fx-3900PV Programs: Finance Factors


I’m revisiting the fx-3900Pv, which seems to be a hit. The last set of programs from May 3 of this year: https://edspi31415.blogspot.com/2025/05/casio-fx-3900pv-linear-system-poisson.html


Remember: When using the ENT (enter/input) command, we must enter a valid number and then the next step. The number that precedes ENT is not counted as a step and is not recorded.


Example: x + 9


In LRN (learn) mode (Mode EXP):

ENT (enter any number)

+

9

=


Casio fx-3900Pv: Simple Interest


maturity amount = principal amount * (1 + 0.01 * I%) * N ÷ 360

interest accrued = maturity amount – principal amount


I% = annual interest rate

N = number of days


The Act/360 method is used.


Code (23 steps):

ENT # enter principal amount (PV)

Kin 1

×

(

1

+

.

0

1

×

ENT # enter interest rate

×

ENT # enter number of days

÷

3

6

0

)

=

HLT # pause, display maturity amount

-

Kout 1

= # display interest accrued, end program


Example 1:


Inputs:

Principal Amount: 1,000.00

Rate: 5%

Number of Days: 30


Output (rounded to 2 decimal places)

Maturity Amount: 1,004.17

Interest Accrued: 4.17


Example 2:


Inputs:

Principal Amount: 360.00

Rate: 8%

Number of Days: 90


Output (rounded to 2 decimal places)

Maturity Amount: 367.20

Interest Accrued: 7.20



Casio fx-3900Pv: Compound Interest Factor with Compounding Periods


The following program calculates the compound interest factor:


factor = (1 + I% ÷ PYR) ^ (YRS × PVR)


where

I% = annual interest rate

PYR = payments per year (compounding periods)

YRS = number of years (N)


The factor is used in simple compound interest problems:


FV = PV × factor


where:

FV = future value

PV = present value


Code (19 steps):

(

1

+

.

0

1

×

ENT # enter interest rate

÷

ENT # enter payments per year

Kin 1

)

x^y

(

ENT # enter number of years

×

Kout 1

)

=


Example:

Find the compound interest interest factor for: I% = 5%, 12 payments a year, 4 years


Factor: 1.220895351


If an investor expects a $5,000.00 payoff, what should the investor pay?

PV = FV ÷ X

Keys: (with the answer from program displayed: [ 1/x ] [ × ] 5000 [ = ])

PV (rounded): 4,0953.36



Casio fx-3900Pv: Loan Annuity Factor


The following program calculates the loan annuity factor:


factor = ( ( 1 - ( 1 + I% ÷ PYR ) ^ (-YRS × PYR) ) ÷ ( I% ÷ PYR )


where

I% = annual interest rate

PYR = payments per year (compounding periods)

YRS = number of years (N)


The factor is used in loan problems without balloon payments, and assume that the payments occur at the end of each period (ordinary annuity):


PV = PMT × factor


where:

PV = present value

PMT = periodical payments


Code (30 steps):

ENT # enter interest rate

÷

ENT # enter payments per year

Kin 2

×

.

0

1

=

Kin 1 # K1 = I% ÷ PYR

ENT # enter number of years

×

Kout 2

=

Kin 2 # K2 = YRS × PYR = N

(

1

-

(

1

+

Kout 1

)

x^y

Kout 2

+/-

)

÷

Kout 1

=


Example:

A student buys a car at $35,619 (after taxes and fees). The student gets a six year loan at 5.7% and pays at the end of each month. What is the payment?


PMT = PV ÷ factor

where PV = 35619, I% = 5.7, PYR = 12 (monthly payments), YRS = 6


Running the program with inputs 5.7, 12, 6: 60.85819003

Payment: [ 1/x ] [ × ] 35619 [ = ]: 585.28 (rounded)



Casio fx-3900Pv: Sinking Fund Factor (Savings Account)


The following program calculates the sinking factor (used for savings accounts):


factor = ( (1 + I% ÷ PYR) ^ (YRS × PYR) – 1 ) ÷ (I% ÷ PYR)


The factor is used in determining the future value of savings plans with regular deposits made at the end of each period:


FV = PMT × factor


Code (29 steps):

ENT # enter interest rate

÷

ENT # enter payments per year

Kin 2

×

.

0

1

=

Kin 1 # K1 = I% ÷ PYR

ENT # enter the number years

×

Kout 2

=

Kin 2 # K2 = YRS × PYR

(

(

1

+

Kout 1

)

x^y

Kout 2

-

1

)

÷

Kout 1

=


Example:


A child’s parents opens up an account on the child’s first birthday. The parents contribute $200.00 per month for the next 18 years. The account pays a fixed rate of 3% per month. What is the value of the fund when the child turns 18?


Note: The account is opened on the child’s first birthday, hence 17 years pass.


FV = PMT × factor

where PMT = 100, I% = 3, PYR = 12, YRS = 17


Running the program with inputs 3, 12, 17: 265.69267

Future Value: [ × ] 200 [ = ]: 53,138.54 (rounded)



Until next time, stay safe and sane,


Eddie


All original content copyright, © 2011-2025. Edward Shore. Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited. This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.


The content on this blog is 100% generated by humans. The author does not use AI engines and never will.