Wednesday, September 4, 2013

Properties of A^x + B^y = C^z with Jonathan Neal


During our study of the Beal Conjecture with my friend and fellow mathematics graduate Jonathan Beal, we looked at the equation

A^x + B^y = C^z

where A, B, C, x, y, and z are integers. As a result A^x, B^y, and C^z are integers.

Let A^x be even (where A is a multiple of 2). Let B = p*m where p is a prime number. Then B^y = p^y * m^y.

The only even prime is 2. All other prime numbers (3, 5, 7, etc. ) are odd.

So if A^x is even and
p = 2 and m is even: p^y is even, m^y is even, B^y is even, and C^z is even.
p = 2 and m is odd: p^y is even, m^y is odd, B^y is even, and C^z is even.
p ≠ 2 and m is even: p^y is odd, m^y is even, B^y is even, and C^z is even.
p ≠ 2 and m is odd: p^y is odd, m^y is odd, B^y is odd, and C^z is odd

Assuming A^x is odd and
p = 2 and m is even: p^y is even, m^y is even, B^y is even, and C^z is odd.
p = 2 and m is odd: p^y is even, m^y is odd, B^y is even, and C^z is odd.
p ≠ 2 and m is even: p^y is odd, m^y is even, B^y is even, and C^z is odd.
p ≠ 2 and m is odd: p^y is odd, m^y is odd, B^y is odd, and C^z is even.

Eddie


This blog is property of Edward Shore. 2013




1 comment:

  1. Thank you for your post. This is excellent information. It is amazing and wonderful to visit your site. It really gives me an insight on this topic. You can find more information about residential properties here.

    ReplyDelete

HP Prime and TI-84 Plus: Basic Wheatstone Full Bridge Circuit

HP Prime and TI-84 Plus:  Basic Wheatstone Full Bridge Circuit The program WHEATSTONE (HP Prime) and WHTSTONE (TI-84 Plus CE) deals wi...