## Saturday, August 9, 2014

### HP RPN Advance Functions Video Up and Running

This is part two of the RPN Mode for HP Prime tutorial.  This time I am taking about advanced functions, such as numeric integrals, numeric derivatives, summation, and solving equations.

http://youtu.be/YAJwjpldiak

DETAILS:

Syntax - RPN Mode:
-----
MAX and MIN
Path:  Toolbox, Math, 2, 1 for MAX (2 for MIN)

Syntax:
1:  list or vector
MAX(1) or MIN(1)
- or -
Numbers on the stack
MAX(n) or MIN(n)   (n is 9 or less)
-----
Factorizing Integers – CAS.ifactor

1.  Enter the integer to be factorized, press the Enter key.
2.  Press Toolbox, CAS, 5, 2, 1 to execute CAS.ifactor(1)
-----
Generating a Sequence - MAKELIST
Path:  Toolbox, Math, 6, 1

Stack:
5:  ‘function in single quotes’
4:  ‘variable in single quotes’
3:  beginning point
2:  ending point
1:  increment/decrement
MAKELIST(5)
-----
Finding the Roots of a Polynomial - CAS. proot
Path:  Toolbox, CAS, 6, 1

Stack:
1:  vector or list of coefficients (decreasing power of x)
CAS.proot(1)
-----
Summation – CAS.sum
Path: Toolbox, Math, 2, 5

Stack:
4:  ‘function in single quotes’
3:  ‘variable’
2:  starting point
1:  finishing point
CAS.sum(4)
-----
Numerical Integration
1.  Press the Template Key, choose ∫ (2nd row, 4th column)
2.  Fill in the template – use capital letters for the variable
3.  Press the Enter Key
4.  Finally, press Toolbox, CAS, 1, 1 to execute CAS.simplify(1)
-----
Numerical Derivative
1.  Store value in the variable: Number, Enter Key, Variable in single Quotes, Shift Key, EEX Key
2.  Press the Template Key, choose ∂ (1st row, 4th column).  Fill in the template – use capital letters
for the variable, and press the Enter Key
3.  Finally, press Toolbox, CAS, 1, 1 to execute CAS.simplify(1)
-----
Matrix Operations
Put the matrix on the stack.  Use the Template Key, choose matrix (1st row, 6th column).

Determinant:  Press Toolbox, Math, 7, 2.  Determinant is calculated automatically.
Inverse:  Press Shift, then the division key. (x^-1).  This works for square matrices only.
Eigenvalues:  Press Toolbox, Math, 7, 6, 1.  CAS.EIGENVAL is called.  Execute CAS.EIGENVAL(1).
-----
Finding Numerical Roots using FNROOT
Path:  Toolbox, Math, 2, 4
Stack:
3:  ‘function in single quotes’
2:  ‘variable’
1:  guess
Execute FNROOT(3)

Format:   function = 0
-----

Eddie

This blog is property of Edward Shore.  2014