Wednesday, July 6, 2016

TI-55 III Programs Part I: Digital Root, Complex Number Multiplication, Escape Velocity

TI-55 III Programs Part I:  Digital Root, Complex Number Multiplication, Escape Velocity



This blog begins a three part series of programs with the TI-55 III.  Let's show what this calculator can do.



TI-55 III: Digital Root

Takes the digital root of an integer.  To find the digital root:

1.  Add up the number’s digits.
2.  The sum is over 10, add the digits again.
3.  Repeat step 2 until you get a single digit.

Or alternatively, use the formula dr(n) = 1 + ((n-1) mod 9) = n – 9 * integer((n-1)/9)

Program:
Partitions Allowed: 1-5, 1 register required
STEP
CODE
KEY
COMMENT
00
61
STO
Enter integer
01
00
0

02
75
-

03
09
9

04
65
*

05
53
(

06
53
(

07
71
RCL

08
00
0

09
75
-

10
01
1

11
54
)

12
55
÷

13
09
9

14
54
)

15
88
Intg

16
95
=

17
12
R/S
Display digital root

Input:  integer [RST] [R/S]
Result:  digital root

Test 1:  Input: 1555, Result: 7
Test 2:  Input: 38267, Result: 8

TI-55 III: Complex Number Multiplication

(a + bi)*(c + di) = (r1*r2) * e^(i*(θ1 + θ2))

Where r1 ∠ θ1 is the polar form of a + bi and r2 ∠ θ2 is the polar form of c + di.

Program:
Partitions Allowed:  2-4, 2 memory registers are required
STEP
CODE
KEY
COMMENT
00
52
X<>Y
Start with a
01
12
R/S
Prompt for b
02
41
INV

03
57
P-R
Convert to Polar
04
61
STO

05
01
1

06
52
X<>Y

07
61
STO

08
00
0

09
12
R/S
Prompt for c
10
52
X<>Y

11
12
R/S
Prompt for d
12
41
INV

13
57
P-R
Convert to Polar
14
61
STO

15
85
+

16
01
1
STO+ 1
17
52
X<>Y

18
61
STO

19
65
*

20
00
0
STO* 0
21
71
RCL

22
00
0

23
52
X<>Y

24
71
RCL

25
01
1

26
57
P-R
Convert to Rectangular
27
12
R/S
Display imaginary part
28
52
X<>Y

29
12
R/S
Display real part

Input:  a [RST] [R/S], b [R/S], c [R/S], d [R/S]
Result:  imaginary part of the product [R/S], real part of the product

Test 1:  (5 – 3i)*(4 + i)
Input: 5 [RST] [R/S], 3 [+/-] [R/S], 4 [R/S], 1 [R/S]
Result: -7 [R/S] 23   (23 – 7i)

Test 2: (-6 + 3i)*(2 + 2i)
Result:  -18 – 6i

TI-55 III:  Escape Velocity

v = √(2*G*m/r)

v = escape velocity (m/s)
G = University Gravitational Constant = 6.67384 * 10^-11 m^3/(kg*s^2)
m = mass of the planet (kg)
r = radius of the planet (m)

Note that 2*G = 1.334768 * 10^-10 m^3/(kg*s^2)

Program:
Allowed Partitions: 1-5
STEP
CODE
KEY
COMMENT
00
47
Eng
Set Engineering Mode
01
65
*
Start with mass
02
01
1

03
93
.
Decimal Point
04
03
3

05
03
3

06
04
4

07
07
7

08
06
6

09
08
8

10
42
EE

11
01
1

12
00
0

13
94
+/-

14
55
÷

15
12
R/S
Prompt for radius
16
95
=

17
13

18
12
R/S
Display escape velocity

Input:  mass (in kg) [RST] [R/S] radius (in m) [R/S]
Result: escape velocity (m/s)

Test 1:
Earth:  m = 5.97219 * 10^24 kg, r = 6.378 * 10^6 m
Input:  5.97219 [EE] 24 [RST] [R/S] 6.378 [EE] 6 [R/S]
Result:  ≈ 11.179E3 (11,179 m/s)

Test 2:
Jupiter:  m = 1.89796 * 10^27 kg, r = 71.492 * 10^6 m
Result:  ≈ 59.528E3  (52,528 m/s)

Eddie

This blog is property of Edward Shore, 2016



HHC 2025 Videos

  HHC 2025 Videos The talks from the HHC 2025 conference in Orlando, Florida are starting to be up on hpcalc’s YouTube page within th...