HP Prime: Mathematical Calculations with 3-Dimensional Vectors
Note: all
examples are calculated in Degrees mode.
Rectangular to Spherical Coordinates
The program RECT2SPH
converts the coordinates [x, y, z] to [r, θ, ϕ].
Syntax: RECT2SPH([x, y, z])
HP Prime RECT2SPH:
Rectangular to Spherical Coordinates
EXPORT RECT2SPH(v)
BEGIN
// [x,y,z]→
LOCAL r,θ,φ,x,y,z;
x:=v(1); y:=v(2); z:=v(3);
r:=√(x^2+y^2+z^2);
θ:=ATAN(y/x);
φ:=ACOS(z/r);
RETURN [r,θ,φ];
END;
Example: RECT2SPH([2,
3, 4]) return [5.38516480713, 56.309932474, 42.0311137741]
Spherical
to Rectangular Coordinates
The program SPH2RECT converts the coordinates [r, θ, φ] to [x, y, y].
Syntax: SPH2RECT([r, θ,
φ])
HP Prime SPH2RECT:
Spherical Coordinates to Rectangular Coordinates
EXPORT SPH2RECT(v)
BEGIN
// [r,θ,φ]→
LOCAL r,θ,φ,x,y,z;
r:=v(1); θ:=v(2); φ:=v(3);
x:=r*COS(θ)*SIN(φ);
y:=r*SIN(θ)*SIN(φ);
z:=r*COS(φ);
RETURN [x,y,z];
END;
Example: SPH2RECT([6,
30, 48]) returns [3.86149378532, 2.22943447643, 4.01478363815]
Linear
Distance
The program LIN3DIST is the linear distance between two
three-dimensional points. The
coordinates are Cartesian. Enter each
coordinate point separately.
Syntax: LIN3DIST(x1, x2,
y1, y2, z1, z2)
HP Prime LIN3DIST:
Linear distance between coordinates
EXPORT LIN3DIST(x1,x2,y1,y2,z1,z2)
BEGIN
// linear distance
LOCAL d;
d:=√((x2-x1)^2+(y2-y1)^2
+(z2-z1)^2);
RETURN d;
END;
Example: Find the linear distance between points
(2,3,-7) and (-1,8,2).
Input: LIN3DIST(2, -1, 3, 8, -7, 2) returns
10.7238052948.
Spherical Distance (Arc Length)
The program
SPH3DIST is the spherical distance between two three-dimensional points that
share the same radius. This is similar
to the great circle distance.
Syntax: SPH3DIST(r, φ1, φ2 ,λ1 ,λ2)
HP Prime SPH3DIST:
Spherical distance between coordinates
EXPORT SPH3DIST(r,φ1,φ2,λ1,λ2)
BEGIN
// Spherical Distance
LOCAL d;
d:=ACOS(SIN(φ1)*SIN(φ2)+
COS(φ1)*COS(φ2)*COS(λ1-λ2));
d:=d*r;
RETURN d;
END;
Example: Find the spherical distance between points φ1
= 40°, φ2 = 64°, λ1 = -18°, λ2 = 33°.
The radius is 14.
SPH3DIST(14,
40, 64, -18, 33) returns 519.226883434
Angle between Two Three-Dimensional Coordinates
The program
VANGLE calculates the angle between two points.
Both points are entered in vector form.
Syntax: VANGLE([x1,y1,z1], [x2,y2,z2])
HP Prime VANGLE:
Angle between two coordinates
EXPORT VANGLE(v1,v2)
BEGIN
// Angle between 2 vectors
LOCAL θ;
θ:=ACOS(DOT(v1,v2)/
(ABS(v1)*ABS(v2)));
RETURN θ;
END;
Example: Find the
angle between [5,4,5] and [2,0,-3].
VANGLE([5,4,5],[2,0,-3]) returns 99.8283573577°
Rotating
a Cartesian Coordinate Vector
The program ROT3X, ROT3Y, and ROT3Z rotates the
three-dimensional vector [x, y, z] with respect to the x-axis (ax), respect to the y-axis (ay), and respect to
the z-axis (az), respectively.
Syntax: ROT3X(v, ax), ROT3Y(v, ay),
ROT3Z(v, az)
Caution: the result
will be a matrix instead of a vector
HP Prime: ROT3X
EXPORT ROT3X(v,ax)
BEGIN
// [x,y,z],θx
v:=TRN(v);
v:=[[1,0,0],[0,COS(ax),−SIN(ax)],
[0,SIN(ax),COS(ax)]]*v;
RETURN TRN(v);
END;
HP Prime: ROT3Y
EXPORT ROT3Y(v,ay)
BEGIN
// [x,y,z],θy
v:=TRN(v);
v:=[[COS(ay),0,SIN(ay)],
[0,1,0],[−SIN(ay),0,COS(ay)]]*v;
RETURN TRN(v);
END;
HP Prime: ROT3Z
EXPORT ROT3Z(v,az)
BEGIN
// [x,y,z],θz
v:=TRN(v);
v:=[[COS(az),−SIN(az),0],
[SIN(az),COS(az),0],[0,0,1]]*v;
RETURN TRN(v);
END;
Example: Rotate the
vector [2, 3, 4] 30°, with respect to the x-axis, y-axis, and z-axis, separately
and respectfully.
ROT3X([2, 3, 4], 30) returns [[ 2, 0.598076211352,
4.96410161514 ]]
ROT3Y([2, 3, 4], 30) returns [[ 3.73205080757, 3,
2.46410161514 ]]
ROT3Z([2, 3, 4], 30) returns [[ 0.232050807568,
3.59807621135, 4]]
This blog is property of Edward Shore, 2016