HP 17BII and HP 27S: Quadratic Formula
0>
The following solver equations solve the quadratic equation
A*x^2 + B*x + C = 0
by the famous Quadratic Formula
x = (-B ± √(B^2 - 4*A*C) ) / (2*A)
Define D as the discriminant: D = B^2 - 4*A*C
If A, B, and C are real numbers and:
D<0, the roots are complex conjugates
D≥0, the roots are real roots
Quadratic Equation: Real Roots Only
QUAD:X=INV(2*A)*(-B+SQRT(B^2-4*A*C)*SGN(R#))
Input Variables:
A: coefficient of X^2
B: coefficient of X
C: constant
R#: -1 or 1
Output Variables:
X: root
Example: 2X^2 + 3X - 5 = 0
Input:
A: 2
B: 3
C: -5
R#: 1 (or any positive number)
Output:
X = 1
Input:
R#: -1
Output:
X = -2.5
Quadratic Equation: Real or Complex Roots
(Let (L) and Get (G) functions required)
QUAD:0*(A+B+C+L(D:B^2-4*A*C)+L(E:2*A))
+IF(S(X1):IF(D<0:-B÷G(E):(-B+SQRT(D))÷G(E))-X1:0)
+IF(S(X2):IF(D<0:SQRT(ABS(D))÷G(E):(-B-SQRT(D))÷G(E))-X2:0)
Input Variables:
A: coefficient of X^2
B: coefficient of X
C: constant
Output Variables:
D: Discriminant
If D<0: X1: real part, X2: imaginary part
If D≥0: X1: real root 1, X2: real root 2
Example 1: -3*X^2 + 8*X - 1= 0
Input:
A: -3
B: 8
C: -1
Output:
D = 52
X1 = 0.1315
X2 = 2.5352
Roots: x = 0.1315, x = 2.5352
Example 2: 3*X^2 + 5*X + 3 = 0
Input:
A: 3
B: 5
C: 3
Output:
D = -11
X1 = -0.8333
X2 = 0.5528
Roots: x = -0.8333 ± 0.5528i
Eddie
All original content copyright, © 2011-2019. Edward Shore. Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited. This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.