Sunday, February 16, 2020

Casio fx-3650P: Circular Segment

Casio fx-3650P: Circular Segment

Introduction





Variables:
X:  radius
Y:  angle (in degree)
C:  chord length
D:  altitude
A:  area
B:  arc length

Program 1:  Given Chord Length and Altitude

Calculate:  Radius, Angle, Area, Arc Length

? → C : ? → D : Deg :
( ( C ÷ 2 )^2 + D^2 ) ÷ ( 2D ) → X ◢
2 cos^-1 ( ( X - D ) ÷ X ) → Y ◢
X^2 ÷ 2 * ( π Y ÷ 180 - sin Y ) → A ◢
X Y π ÷ 180 → B

Example:
Input C = 8,  D = 11.75

X:  6.555851064 (radius)
Y:  284.8004594 (angle)
A:  127.5950317 (area)
B:  32.58720643 (arc length)

Program 2:  Given Radius and Angle

Calculate:  Chord Length, Altitude, Area, Arc Length

? → X : ? → Y : Deg :
2 * sin(Y ÷ 2) → C ◢
2 X ( sin(Y ÷ 4))^2 → D ◢
X^2 ÷ 2 * ( π Y ÷ 180 - sin Y ) → A ◢
X Y π ÷ 180 → B

Example:
Input X = 17.25, Y = 204

C:  33.74609223 (chord length)
D:  20.83647667 (altitude)
A:  590.2462124 (area)
B:  61.41813638 (arc length)

Source:

John W Harris and Horst Stocker.  Handbook of Mathematics and Computational Science Spring:  New York.  2006 ISBN 978-0-387-94746-4

Announcement

I am going to have surgery this week and my family is having medical issues.  I will be taking some time off in the next few weeks.  Tomorrow I have a special post reviewing the classic TI-30 from 1976. Take care everyone and thank you so much for your support.  I love doing this blog. 

Eddie

All original content copyright, © 2011-2020.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.

TI 84 Plus CE: Consolidated Debts

TI 84 Plus CE: Consolidated Debts   Disclaimer: This blog is for informational and academic purposes only. Financial decisions are your ...