Monday, November 8, 2021

Derivatives with Surprisingly Imaginary Results

Derivatives with Surprisingly Imaginary Results



Here are three derivatives of functions where complex numbers are involved with further algebraic simplification.  




d/dx √(a - x)^(1/2)



d/dx √(a- x)^(1/2)


= 1/2 ∙ (a - x)^(-1/2) ∙ -1


= -1/2 ∙ 1 ÷ (√(a - x))


Going a step further...


= -1/2 ∙ 1 ÷ (√(-1) ∙ √(x - a))


With √(-1) = i ,  1/i = -i


= i ÷ (2 ∙ √(x - a))



d/dx  arcsin(x + a)



d/dx arcsin(x + a)


= 1 ÷ √(1 - (x + a)^2)


= 1 ÷ √(1 - (x^2 + 2 ∙ a ∙ x + a^2))


= 1 ÷ √(-x^2 - 2 ∙ a ∙ x + 1 - a^2)


Factoring out -1 in the denominator: 


= 1 ÷ √((-1) ∙ (x^2 + 2 ∙ a ∙ x - 1 + a^2))


= 1 ÷ (i ∙ √(x^2 + 2 ∙ a ∙ x - 1 + a^2))


= -i ÷ √(x^2 + 2 ∙ a ∙ x - 1 + a^2)



d/dx e^(√(a - x)) 



d/dx e^(√(a - x)) 


= e^(√(a - x)) ∙ d/dx √(a - x)


= -e^(√(a - x)) ÷ (2 ∙ √(a - x))


With:  √(a - x) = i ∙ √(x - a) and e^(i ∙ Θ) = cos Θ + i ∙ sin Θ


= -e^(i ∙ √(x - a)) ÷ (2 ∙ i ∙ √(x - a))


= -e^(i ∙ √(x - a)) ÷ (2 ∙ i ∙ √(x - a))


=  i ∙ e^(i ∙ √(x - a)) ÷ (2 ∙ √(x - a))


= (i ∙ (cos √(x - a) + i ∙ sin √(x - a)) ÷ (2 ∙ √(x - a))


= (-sin √(x - a) + i ∙cos √(x - a)) ÷ (2 ∙ √(x - a))




Eddie


All original content copyright, © 2011-2021.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 


HP 15C: Distance and Slope Between Two Points Using Polar Conversion and the Stack

HP 15C: Distance and Slope Between Two Points Using Polar Conversion and the Stack HP 15C Program: Distance and Slope This short...