Tuesday, March 29, 2022

March Calculus Madness Sweet Sixteen - Day 14: The Arc Length of a Spiral

 ------------


Welcome to March Calculus Madness!


------------


The Length of a Spiral from 0 ≤ Θ ≤ m


The equation of a spiral:  r = α * Θ


The arc length of a polar equation r(Θ):  ∫ √(r(Θ)^2 + (dr/dΘ)^2) dΘ


r = α * Θ

r^2 = α^2 * Θ^2


dr = α dΘ

(dr/dΘ)^2 = α^2


∫ √(α^2 * Θ^2 + α^2) dΘ from Θ = 0 to Θ = m

= α * ∫ √(Θ^2 + 1) dΘ from Θ = 0 to Θ = m

= α/2 * ( ln|Θ + √(1 + Θ^2)| + Θ * √(1 + Θ^2) for Θ = 0 to Θ = m)

(see below)

= α/2 * ( ln|m + √(1 + m^2)| + m * √(1 + m^2) )



Aside:

∫ √(1 + Θ^2) dΘ


Let Θ = tan x

dΘ = sec^2 x dx


∫ √(1 + Θ^2) dΘ

= ∫ √(1 + tan^2 x) * sec^2 x  dx

= ∫ √(sec^2 x) * sec^2 x dx

= ∫ sec^3 x dx

= 1/2 * ∫ sec x dx + (sec x * tan x)/2 + C

(per reduction integration rule for sec x)


= 1/2 * ln|tan x + sec x| + 1/2 * sec x * tan x + C


with: 

Θ = tan x

arctan Θ = x

sec(arctan Θ) = sec x

√(1 + x^2) = sec x


= 1/2 * ln|Θ + √(1 + Θ^2)| + 1/2 * Θ * √(1 + Θ^2) + C


Eddie 


All original content copyright, © 2011-2022.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 


RPN: HP 42S, DM42, Free 42 Tones, Column Vectors, and Songs

RPN: HP 42S, DM42, Free 42 Tones, Column Vectors, and Songs Making Music of 10 Tones The HP 42S, and subsequently, the Free42 app...