Sunday, July 10, 2022

Calculus: Scaled Integration

Calculus:  Scaled Integration


Introduction


The take the integral:


∫( f(x) dx, A, B) 


The integral can be transformed to new limits C and D via linear transformation:



∫( f(x) dx, A, B) → ∫( g(y) dy, C, D)


Where the interval [ C, D ] has the smaller range than [ A, B ].


Set the transformation to:


y = m*x + β


C = m*A + β

D = m*B + β


Solving for m, β:


(C - D) = (A - B) * m

m = (C - D) / (A - B)


and


β = C - A * m = D - B * m


Solving y = m*x + β for x:


x = 1/m * (y - β)


Taking the derivative of both sides:


dx = 1/m  dy


The transformed integral:


∫( f(x) dx, A, B) → 1/m * ∫( f(1/m * (y - β)) dy, C, D)


Examples


Example 1:  


∫(x^2 - 5 dx, 10 ,16) but scale the integration interval to [1, 2].


A = 10, B = 16, C = 1, D = 2

m = (1 - 2)/(10 - 16) = 1/6,  1/m = 6

β = 1 - 10 * 1/6 = -2/3

x = 6 * (y + 2/3) = 6 * y + 4


Transformed Integral:

6 * ∫( (6*y + 4)^2 - 5 dy, 1, 2) = 1008


Example 2:


∫( e^x * ln(x + 2) dx, 0, 5) but scale the integration to [0, 1].


A = 0, B = 5, C = 0, D = 1

m = -1/-5 = 1/5,  1/m = 5

β = 0 - 0 * 1/5 = 0

x = 5 * y


Transformed Integral:

5 * ∫( e^(5 * y) * ln(5 * y + 2) dy, 0, 1) ≈ 262.8586594


Numerical integrals were calculated with the TI-36X Pro.  


When trying the Simpson's rule or Trapezoid rule, I find the smaller range does not really give better estimates.  But I am presenting the technique and if this helps in the future, great.  


Coming up:


July 11 - July 15, 2022:  TI-58 and TI-59 Week

Next Regular Blog:  July 23, 2022


Eddie  


All original content copyright, © 2011-2022.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 


BA-54: Real Estate Programs

BA-54: Real Estate Programs BA-54:  Chris won this calculator at HHC 2024 and donated it to me.   Much appreciation as always.  ...