Saturday, April 27, 2013

Java Brew Coffee House and Other Saturday Adventures

I hope everyone is doing well today! I am coming to you form Java House Coffee Shop in Montrose, CA.

This morning I went to the Glendale College Library. Guests have to park on the top lot. To get to the campus required a combination stair climbing and taking elevators. I love the view from the top.

Among subjects studied today are centriods, inverse problems, and surface integrals. Three hours went by and I left 20 minutes before the library closed, which only proves the saying "So much to do, and so little time."

Here is some of what studied today:
------
Centriods:

Points (x,y) each with mass m:

X-bar: Σ(x*m)/Σm, Y-bar: Σ(y*m)/Σm

Continuous functions, uniform thickness and density, f(x) ≥ g(x), limits a ≤ x ≤ b,

M_y = ∫(x * (f(x) - g(x)) dx, a, b)
M_x = 1/2 * ∫( (f(x))^2 - (g(x))^2, x, a, b)
M = ∫( f(x) - g(x) dx, a, b)

X-bar: M_y/M, Y-bar: M_x/M

Jon Guilleberg. "Mathematics: From the Birth of Numbers." W.M. Norton & Co. 1997

Normal Vectors

If a vector is perpendicular to another vector, the former vector is known as a normal vector. We can find a normal vector to any two vectors U and V by the cross product.

N = U × V

And the Unit Normal Vector:

n = (U × V)/|U × V| = vector/(norm of a vector)

Applying the normal unit vector to a said function z = f(x,y):

n = [-df/dx, -df/dy, 1] / √( 1 + (df/dx)^2 + (df/dy)^2 )

A unit vector has length 1.

Pretend that "d" is the partial derivative operator.

Surface area of z = f(x,y) over region R is:

∫ ∫ (√( 1 + (df/dx)^2 + (df/dy)^2 ) dx dy

H.M. Schey "div grad curl and all that" W.M. Norton & Co. 1992

Yes the title was in all lowercase. I get weirdly fascinated by all-lowercase titles.



Going to finish my lunch, and do some programming. Love to all of you!

Eddie


This blog is property of Edward Shore. 2013

Fun with the HP 30b

Fun with the HP 30 b Introduction The following programs are for the HP 30b Business Professional. Did you know that the 30b...