Sunday, November 15, 2015

The Series ( ((((0 + 1)^-1 + 1)^-1 + 1)^-1 + 1)^-1 + 1)^-1 + … + 1)^-1 and Fibonacci Numbers

The Series ( ((((0 + 1)^-1 + 1)^-1 + 1)^-1 + 1)^-1 + 1)^-1 + … + 1)^-1 and Fibonacci Numbers
  


Add One Then Reciprocate

Define the series t as:

t = ( ((((0 + 1)^-1 + 1)^-1 + 1)^-1 + 1)^-1 + 1)^-1 + … + 1)^-1    (an infinite amount of terms)

This is a sum that can’t be easily stated in summation statement (Σ f(x)). 

On the HP Prime, I programmed this as:

EXPORT TEST1112(n)
BEGIN
LOCAL k, t:=0;
FOR k FROM 1 TO n DO
t:=(t+1)^-1;
END;
RETURN t;
END;

The result seems to converge at 0.6180339785 when n ≥ 27.  Note that 0.6180339785 = ϕ – 1, where ϕ is the Golden Ratio ( ϕ = (√5 + 1)/2)






Fibonacci Gets Involved

Note that:

k =
t =
1
1
2
(1 + 1)^-1 = 1/2
3
(1 + 1/2)^-1 = (3/2)^-1 = 2/3
4
(1 + 2/3)^-1 = (5/3)^-1 = 3/5
5
(1 + 3/5)^-1 = (8/5)^-1 = 5/8
6
(1 + 5/8)^-1 = (13/8)^-1 = 8/13
7
(1 + 8/13)^-1 = (21/13)^-1 = 13/21

We get a sequence of terms {1, 1/2, 2/3, 3/5, 5/8, 8/13, 13/21, 21/34, 34/55, 55/89, 89/144, …} where each term takes the fraction a/b, a is the kth Fibonacci number and b is the (k+1)th Fibonacci number.  Can we show that this sequence of partial sums is convergent?

Each partial sums of the series takes the form F_k / F_k+1 where F is the Fibonacci number.

The closed formula for the Fibonacci number is:

F_k = ( ϕ^k – α^k )/√5 , where ϕ  = (1 + √5)/2 and α = (1 - √5)/2.

Then:

F_k / F_k+1
=( ϕ^k – α^k )/√5 * √5/( ϕ^k+1 – α^k+1)
=( ϕ^k – α^k) / ( ϕ^k+1 – α^k+1 )
= ( ϕ^k / ϕ^k+1) * ( (1 – (α/ϕ)^k) / (1 – (α/ϕ)^k+1) )
= 1/ϕ * ( (1 – (α/ϕ)^k) / (1 – (α/ϕ)^k+1) )

Note that α/ϕ = (1 - √5)/(1 + √5 ) ≈ -0.38197 < 1

As k → ∞,  α/ϕ → 0. 

Hence,

lim k → ∞ (F_k / F_k+1)
= lim k → ∞ (1/ϕ * ( (1 – (α/ϕ)^k) / (1 – (α/ϕ)^k+1) ) )
= 1/ϕ

Simplifying:

1/ϕ
= 2/(1 + √5)
= 2*(1 - √5) / ((1 + √5)*(1 - √5))
= 2*(1 - √5)/-4
= (√5 – 1)/2
= √5/2 – 1/2

Adding and subtracting 1/2:

√5/2 – 1/2 + (1/2 – 1/2)
= (√5 + 1)/2 – 1
= ϕ – 1

Since the sequence of partial sums converge to ϕ – 1, the series

t = ( ((((0 + 1)^-1 + 1)^-1 + 1)^-1 + 1)^-1 + 1)^-1 + … + 1)^-1   

converges to ϕ – 1.



This blog is property of Edward Shore.  2015.



HHC 2025 Videos

  HHC 2025 Videos The talks from the HHC 2025 conference in Orlando, Florida are starting to be up on hpcalc’s YouTube page within th...