Wednesday, March 2, 2016

HP Prime and Casio fx-5800p Approximating the Factorial Function

HP Prime and Casio fx-5800p Approximating the Factorial Function

A quick way to estimate the factorial function, which is good for all real numbers (and complex numbers with the HP Prime) is determined by Gergő Nemes Ph. D (Mathematics, University of Edinburgh):

N! ≈ N^N * √(2*π*N) * e^(1/(12*N+2/(5*N+53/(42*N)))-N)

The error is the order of 1 + O(N^-8).   Like the Sterling approximation formula, this formula is a better approximation as N increases. 

Casio fx-5800p Program:  GERGO

“GERGO RSKEY.ORG”
“N”? → N
N^(N)*√(2πN)*e^(
1÷(12N+2÷(5N+53÷
(42N)))-N)

HP Prime:  GERGO

EXPORT GERGO(N)
BEGIN
// rskey.org 2016-03-02
RETURN N^N*√(2*N*π)*
e^(1/(12*N+2/(5*N+53/(42*N)))
-N);
END;

How accurate is it?

Here a test of some random values to compare accuracy.

Values

N
N! (Determined by Wolfram Alpha)
N! approximation
1.25
1.13300309631…
1.133039736
3.08
6.64025496878…
6.640255733
5
120
120.0000005
6.64
2460.94013688180…
2460.940138
8.27
72172.53628421024…
72172.53629
11.5
1.368433654655… x 10^8
136843365.5

Source:

“Sterling’s Approximation”  Wikipedia – Page February 26, 2016 https://en.wikipedia.org/wiki/Stirling%27s_approximation#cite_note-Nemes2010-10 Retrieved March 1, 2016


Toth, Viktor T.  “The Gamma Function”  R/S Programmable Calculators  http://www.rskey.org/CMS/the-library?id=11  Retrieved March 1, 2016

HHC 2025 Videos

  HHC 2025 Videos The talks from the HHC 2025 conference in Orlando, Florida are starting to be up on hpcalc’s YouTube page within th...