**Casio fx-5800p Special Functions**

**Programs**

**An Alternate Way of Extracting the Fraction and Integer Parts of a Number**

The fraction part is stored in F, and the integer part is
stored in I. This algorithm can be used when
a calculator or programming language does not have a fractional part or integer
part function.

This program assumes the program is in Radians mode.

**Casio fx-5800P Program FPIP**

Rad

0.5
→ F

? → X

cos(πX) = 0 ⇒ Goto 1

Abs(X) → F

tan^-1 (tan (πF)) ÷
π → F

X < 0 ⇒ -F → F

Lbl 1

F /right-triangle
([Shift] [x^2])

X – F → I

**Bernoulli Numbers**

The program BERNOULLI approximates the Bernoulli number of
nth order.

**Casio fx-5800P Program BERNOULLI**

? → N

If N = 0

Then

1 → B

Goto 1

IfEnd

If Frac(N ÷ 2) ≠ 0

Then

Int( Abs(N – 2) ÷ (N
– 2) – 1) ÷ 4 → B

Goto 1

IfEnd

Σ ( (2*J*π)^(-N), J,
1, 250) * (-1)^(N ÷ 2 + 1) * 2 * N! → B

Lbl 1

B

**Euler Numbers**

The program EULERNUM calculates the Euler number of order n.

**Casio fx-5800P Program EULERNUM**

? → N

0 → E

Frac(N ÷ 2) ≠ 0 ⇒ Goto 1

(2 ÷ π)^(N + 1) * N!
÷ 5 → E

-1 – 10 * Int(E) → E

Frac(N ÷ 4) ≠ 0 ⇒ Goto 1

4 – E → E

N ≠ 0 ⇒ Goto 1

1
→ E

Lbl 1

E

**Custom Formulas**

How to create custom formulas: [MODE], 5.
PROG, 1. NEW, give the name, 3.
Formula

To calculate the custom formula, press [CALC], enter the value
for T (ignore X because X is a dummy variable).

Sine Integral:
SI: ∫( sin(X)/X dX,0,T)

Dawson Integral:
DAWSON: ∫(e^(T^2-X^2) dX,0,T)

Bessel Function, with order N: BESSEL:
1/π * ∫(cos(T * sin(X)-N*X) dX,0,T)

Error Function:
ERF: 2/√π * ∫(e^(-X^2) dX,0,T)

Fresnel Sine:
FRESSIN: ∫( sin(π*X^2/2) dX,0,T)

Fresnel Cosine: FRESCOS: ∫( cos(π*X^2/2) dX,0,T)

Source:

Jerome Spainer and Keith B. Oldham

__An Atlas of Functions__Hemisphere Publication Corporation: Washington 1987 ISBN 0-89116-5738-8
Eddie

This blog is property of Edward Shore, 2017

The correlation-calculator displays correlations for major, exotic and cross currency pairs. It is a useful analytical tool that helps in making a sound trading decision.

ReplyDeleteYou always provide quality based posts, enjoy reading your work. replica watches india

ReplyDeleteWanted to take this opportunity to let you know that I read your blog posts on a regular basis. Your writing style is impressive, keep it up! replica watches india

ReplyDelete