Sunday, September 22, 2019

The Error Function and Normal Distribution: Norm(x) and Erf(x)

The Error Function and Normal Distribution:  Norm(x) and Erf(x)

Introduction

The error function is defined as:

erf(x) = 2/√π * ∫( e^(-t^2) dt, 0, x)

norm(x) = 1/√(2*π) * ∫( e^(-z^2/2) dx, -∞, x)

We were assuming that the mean μ = 0 and variance σ = 1.

Derivation:  norm(x) in terms of erf(x)

norm(x)

= 1/√(2*π) * ∫( e^(-z^2/2) dx, -∞, x)

= 1/√(2*π) * ∫( e^(-z^2/2) dx, -∞, 0) + 1/√(2*π) * ∫( e^(-z^2/2) dx, 0, x)

= 1/2 + 1/√(2*π) * ∫( e^(-z^2/2) dx, 0, x)

-----------------------------
Substitution:

t^2 = z^2/2
t = z/√2
√2 * t = z
√2 dt = dz

z = 0,  t = 0
z = x,  t = x/√2
-----------------------------

= 1/2 + 1/√(2*π) * ∫( e^(-z^2/2) dx, 0, x)

= 1/2 + 1/√(2*π) * ∫(√2 *  e^(-t^2) dt, 0, x/√2)

 = 1/2 + 1/√π * √π/2 * 2/√π * ∫(√2 *  e^(-t^2) dt, 0, x/√2)

 = 1/2 + (1/√π * √π/2) * (2/√π * ∫(√2 *  e^(-t^2) dt, 0, x/√2))

 = 1/2 + 1/2 * 2/√π * ∫(√2 *  e^(-t^2) dt, 0, x/√2)

= 1/2 + 1/2 *erf(x/√2)

norm(x) = 1/2 + 1/2 *erf(x/√2)

norm(x) - 1/2 = 1/2 *erf(x/√2)

2 norm(x) - 1 = erf(x/√2)

Let t = x/√2, then:

2 norm(√2 * t) - 1 = erf(t)

Summary

norm(x) = 1/2 + 1/2 * erf(x/√2)

erf(t) = 2 * norm(√2 * t) - 1 

with μ = 0 and σ = 1.

Examples

norm(1) = 1/2 + 1/2 * erf(1/√2) ≈ 0.841344746069

erf(1) = 2 * norm(√2) - 1 ≈ 0.84270079295


Eddie

All original content copyright, © 2011-2019.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.

HHC 2025 Videos

  HHC 2025 Videos The talks from the HHC 2025 conference in Orlando, Florida are starting to be up on hpcalc’s YouTube page within th...