Swiss Micros DM41X: Applications
Swiss Micros DM41X Program: Euclid Algorithm
Registers:
R01: A
R02: B
R03: C (used)
Finds the GCD of A and B, where A and B are positive integers and A > B.
01 LBL^T EUCLID
02 ^T GCD A>B
03 AVIEW
04 PSE
05 ^T A?
06 PROMPT
07 STO 01
08 ^T B?
09 PROMPT
10 STO 02
11 LBL 00
12 RCL 01
13 ENTER
14 ENTER
15 RCL 02
16 /
17 LASTX
18 X<>Y
19 INT
20 *
21 -
22 STO 03
23 X=0?
24 GTO 01
25 RCL 02
26 STO 01
27 X<>Y
28 STO 02
29 GTO 00
30 LBL 01
31 ^T GCD=
32 ARCL 02
33 AVIEW
34 END
Examples:
A = 100, B = 20, GCD = 20
A = 78, B =24, GCD = 6
Swiss Micros DM41X Program: Fan Laws
The program will calculate RPM_new (Revolutions per Minute), SP_new (Static Pressure), and BHP_new (Brake Horsepower).
Inputs:
CFM_old: Cubic Feet of Minute - old
CFM_new: Cubic Feet of Minute - new
RPM_old: Revolutions per Minute - old
SP_old: Static Pressure - old
BHP_old: Brake Horsepower - old
Outputs:
RPM_new
SP_new
BHP_new
01 LBL^T FANLAWS
02 CLA
03 ^T CFM.OLD?
04 PROMPT
05 STO 01
06 ^T CFM.NEW?
07 PROMPT
08 STO 02
09 X<>Y
10 /
11 STO 04
12 STO 06
13 ST* 06
14 STO 08
15 ST* 08
16 ST* 08
17 ^T RPM.OLD?
18 PROMPT
19 STO 03
20 ST* 04
21 ^T SP.OLD
22 PROMPT
23 STO 05
24 ST* 06
25 ^T BHP.OLD?
26 PROMPT
27 STO 07
28 ST* 08
29 ^T RPM.NEW=
30 ARCL 04
31 AVIEW
32 STOP
33 ^T SP.NEW=
34 ARCL 06
35 AVIEW
36 STOP
37 ^T BHP.NEW=
38 ARCL 08
39 AVIEW
40 END
Variables:
R01 = CFM.OLD
R02 = CFM.NEW
R03 = RPM.OLD
R04 = RPM.NEW
R05 = SP.OLD
R06 = SP.NEW
R07 = BHP.OLD
R08 = BHP.NEW
The program uses a lot of storage arithmetic.
Example
Inputs:
CFM.OLD: 1250 CFM
CFM.NEW: 1600 CFM
RPM.OLD: 840 RPM
SP.OLD: 4 in
BHP.OLD: 7 BHP
Results:
RPM.NEW: 1075.2 RPM
SP.NEW: 6.5536 in
BHP.OLD: 14.680064 BHP
Source:
Calculated Industries "Sheet Metal/HVAC Pro Calc User's Guide" 2021
Swiss Micros DM41X Program: Johnson-Nyquist Noise Analysis
Equations Used:
Power (in Watts):
P = kb * T * Δf
RMS Voltage (in Volts):
v_n = √(4 * R * kb * T * Δf) = √(4 * R * P)
Current (in Amps):
i_n = √((4 * T * kb * Δf / R) = v_n / R
Inputs:
T = temperature in Kelvin (°C + 273.15)
Δf = bandwidth, difference of frequencies in Hz
R = resistance in ohms (Ω)
Constants: Boltzmann's Constant
kb ≈ 1.380649 * 10^-23 J/K
Program:
01 LBL^T NOISE
02 ^T TEMP? <K>
03 PROMPT
04 ^T BANDWIDTH?
05 PROMPT
06 *
07 1.308649E-23
08 *
09 ^T POW=
10 ARCL X
11 AVIEW
12 STOP
13 ^T R?
14 PROMPT
15 *
16 LASTX
17 X<>Y
18 4
19 *
20 SQRT
21 ^T V=
22 ARCL X
23 AVIEW
24 STOP
25 X<>Y
26 /
27 ^T I=
28 ARCL X
29 AVIEW
30 END
Example:
Temperature: 299.68 K
Bandwidth: 10,500 Hz
Resistance: 1375 Ω
Results:
Power: 4.3444E-17 W
Volts: 4.8882E-7 V
Current: 3.5550E-10 A
"Johnson-Nyquist Noise" Wikipedia. Retrieved February 15, 2015 https://en.wikipedia.org/wiki/Johnson%E2%80%93Nyquist_noise
Eddie
All original content copyright, © 2011-2021. Edward Shore. Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited. This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.