Casio fx-3900PV: Program Bank
Here are a few programs for the Casio fx-3900Pv. These programs should also work on the fx-3600P/fx-180P series (as long as the number of steps is less than 38) except that we can review and edit the steps on the fx-3900Pv. See my review of the fx-3900Pv here:
http://edspi31415.blogspot.com/2023/05/retro-review-casio-fx-3900pv.html
Error Function
The program allows the you to calculate the error function:
erf(b) = ∫( 2 * e^(-x²) ÷ √θ dx, x = 0, x = b)
Code:
001 Min
002 MR
003 x²
004 +/-
005 eˣ
006 ×
007 2
008 ÷
009 π
010 √
011 =
To calculate the erf(b): run integral mode (Mode 1). Select the program, enter n to get 2^n divisions by pressing [SHIFT] [RUN]. Next, enter 0 [RUN], then b [RUN].
Examples: n = 6, (2^6 = 64 divisions)
erf(1.5):
a = 0, b = 1.5, Result: 9.661051 * 10^-1
erf(0.4):
a = 0, b = 0.4, Result: 4.28392 * 10^-1
erf(3.9):
a = 0, b = 3.9, Result: 9.9999997 * 10^-1
Range and Height of a No-Air Projectile
R = v^2 * sin(2 * θ) ÷ g
H = v^2 * sin^2 θ ÷ (2 * g)
where:
R = range of the projectile (m)
H = maximum height of the projectile (m)
v = initial velocity (m/s)
θ = angle in degrees
g = Earth's gravity = 9.80665 m/s^2
Inputs:
K1 = v
K2 = θ
Outputs:
K3 = R
K4 = H
Used:
K5 = g
Code:
001 DEG ( MODE 4 )
002 9
003 .
004 8
005 0
006 6
007 6
008 5
009 Kin 5
010 Kout 1
011 x²
012 ÷
013 Kout 5
014 ×
015 (
016 2
017 ×
018 Kout 2
019 )
020 SIN
021 =
022 Kin 3
023 HLT
024 Kout 1
025 x²
026 ×
027 Kout 2
028 SIN
029 x²
030 ÷
031 2
032 ÷
033 Kout 5
034 =
035 Kout 4
Examples:
Inputs: K1 = 11.9 m/s, K2 = 40°
Outputs:
R = 14.22082219 m
H = 2.98317166312 m
Inputs: K1 = 11.9 m/s, K2 = 60°
Outputs:
R = 12.0558115 m
H = 5.415075484 m
Magnitude and Phase of a LCR Series Circuit
Z = √(R² + (w * L - 1 ÷ (w * C))² )
θ = arctan((w * L - 1 ÷ (w * C)) ÷ R)
where:
Z = magnitude (Ω)
θ = phase angle (degrees)
R = resistance (Ω)
L = inductance (H)
C = capacitance (F)
w = angular frequency, where w = 2 * π * f
f = frequency
Inputs: R, f, C, L
M = f
K2 = L
K3 = R
K4 = C
Outputs:
K1 = w
K5 = Z
K6 = θ
Note that the source (see Source section below) omitted the square root in the formula for Z. The above formula is correct.
Code:
001 DEG (Mode 4)
002 MR
003 Kin 1
004 2
005 Kin× 1 (shown as K×1)
006 π
007 Kin× 1 (shown as K×1)
008 Kout 1
009 ×
010 Kout 2
011 -
012 (
013 Kout 1
014 ×
015 Kout 4
016 )
017 1/x
018 =
019 Kin 6
020 Kout 3
021 x²
022 +
023 Kout 6
024 x²
025 =
026 √
027 Kin 5
028 HLT
029 (
030 Kout 6
031 ÷
032 Kout 3
033 )
034 tan⁻¹
035 =
036 Kin 6
Example:
Inputs:
f = 100 Hz, [ Min ]
L = 4 * 10^-3 H (store in K2)
R = 6300 Ω (store in K3)
C = 5 * 10^-6 F (store in K4)
Outputs:
Z = 6307.909915 Ω (K5)
θ = -2.869631956° (K6)
Quadratic Equations: Real Roots
Solve the equation:
x^2 + K1 * x + K2 = 0
The roots are:
x = (-K1 ± √(K1^2 - 4 * K2)) ÷ 2
Inputs:
K1 = coefficient of x
K2 = constant
Outputs:
K4 = root 1
K5 = root 2
Used: K3 = √(K1^2 - 4 * K2)
Code:
001 (
002 Kout 1
003 x²
004 -
005 4
006 ×
007 Kout 2
008 )
009 √
010 Kin 3
011 (
012 Kout 3
013 +/-
014 -
015 Kout 1
016 )
017 ÷
018 2
019 =
020 Kin 4
021 HLT
022 +
023 Kout 3
024 =
025 Kin 5
Example:
Solve x^2 - 19 * x + 10 = 0
Inputs:
K1 = -19
K2 = 90
Outputs: 9, 10
Source
(for Range and Height of a No-Air Projectile and Magnitude and Phase of a LCR Series Circuit):
Rosenstein, Morton. Computing With the Scientific Calculator. Casio. 1986
Enjoy,
Eddie
All original content copyright, © 2011-2023. Edward Shore. Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited. This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.