Saturday, March 9, 2024

Casio FX-702P, Swiss Micros DM42, HP 27S: Design of Coil Spring

Casio FX-702P, Swiss Micros DM42, HP 27S: Design of Coil Spring


Today’s blog calculates the load of a coil spring.


Variables Used


P

LOAD

Load (kg)

G

SHEAR

Shear Modulus (kg/mm^2)

A

WDIA, W.DIA

Diameter of the wire (mm)

Y

DEFL

Deflection (mm)

N, NA

#COIL

Number of Coils

D

CDIA, C.DIA

Diameter of the coil (mm)

K = (G×A^4)÷(8×N×D)


Spring Constant (kg/mm)
(FX-702P only)



Casio FX-702P Code


The original BASIC programs are listed here (Casio, pg. 72, Program Library FX-702P, see sources):

5 FOR L=1 TO 5

10 INP “K,P:1,A:2,D:3,NA:4”,I

20 FOR J=1 TO 4

30 IF I=J THEN 100

40 NEXT J

50 GOTO 10


100 INP “G=”,G

110 G=G/8

120 IF I=2 THEN 150

130 INP “A=”,A:A=A↑4

140 IF I=3 THEN 170

150 INP “D=”,D:D=D↑3

160 IF I=4 THEN 180

170 INP “NA”=,N

180 INP “Y=”,Y

190 IF I=1;K=G*A/N/D:P=K*Y:PRT “K=”;K,”P=”;P:GOTO 240

200 INP “P=”,P

210 IF I=2;A=(P*D*N/G/Y)↑(1/4):PRT “A=”;A:GOTO 240

220 IF I=3;D=(A*G*Y/N/P)↑(1/3):PRT “D=”;D:GOTO 240

230 N=G*A*Y/D/R:PRT “NA=”;N

240 NEXT L

250 END


INP: input

PRT: print


Swiss Micros DM42 Solver Code: SPRING


Also for HP 42S, Free42, Plus42.


00 { 103-Byte Prgm }
01▸LBL "SPRING"
02 MVAR "LOAD"
03 MVAR "SHEAR"
04 MVAR "W.DIA"
05 MVAR "C.DIA"
06 MVAR "#COIL"
07 MVAR "DEFL"
08 RCL "SHEAR"
09 RCL "W.DIA"
10 4
11 Y↑X
12 ×
13 RCL× "DEFL"
14 8
15 RCL× "#COIL"
16 RCL "C.DIA"
17 3
18 Y↑X
19 ×
20 ÷
21 +/-
22 RCL+ "LOAD"
23 RTN
24 .END.


Run SPRING through the SOLVER.



HP 27S Equation: SPRING


Spaces added for readability.


SPRING: SHEAR × WDIA^4 × DEFL ÷ (8 ×#COIL × CDIA^3)



Example: Copper Spring Coil


Shear: G = 4558.131472 kg/mm^2

Coil Diameter: D = 10 mm

Wire Diameter: A = 0.7 mm

Deflection: Y = 5 mm

Number of Coils: N = 4


Result: Load: P: 0.17100 kg



Calculate the wire diameter if the load is 0.25 kg.


Result: Wire Diameter: A: 0.79672 mm



What if instead we have 8 coils? Wire diameter resets to 0.7 mm.


Result: Load: P: 0.08550 kg




Table of Shear Modulus Values


These are the shear modulus of various mediums. The higher the shear modulus is, the more rigid the solid is. If the solid’s modulus is smaller, it is easier to deform or change its shape. For liquids, the modulus is zero. The table below has two units, GPa (gigapascal) and kg/mm^2. The conversion rate is approximately 1 GPa = 101.9716212978 kg/mm^2.


The values in are from the “What is the Shear Modulus?” article by Dr. Helmenstine (see the Sources section) in GPa.


Shear Modulus

GPa

kg/mm^2

Rubber

0.0006

0.06118297278

Plywood

0.62

63.2224052

Nylon

4.1

418.0836473

Lead

13.1

1335.828239

Aluminum

25.5

2600.276343

Brass

40

4078.864852

Copper

44.7

4558.131472

Titanium

41.1

4191.033635


Source:


Casio. Program Library: FX-702P pp. 71-72 (English)

Helmenstine, Anne Marie, Ph.D. "What Is the Shear Modulus?" ThoughtCo, Feb. 17, 2021, thoughtco.com/shear-modulus-4176406. Retrieved January 21, 2024.

TranslatorsCafe.com “Convert gigapascal [GPa] to kilogram-force/millimeter² [kgf/mm²]”

https://www.translatorscafe.com/unit-converter/en-US/pressure/5-28/gigapascal-kilogram-force/millimeter%C2%B2/ Retrieved January 21, 2024



Eddie


All original content copyright, © 2011-2024. Edward Shore. Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited. This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.


Casio fx-CG50 and Swiss Micros DM32: HP 16C’s Bit Summation

  Casio fx-CG50 and Swiss Micros DM32: HP 16C’s Bit Summation The HP 16C’s #B Function The #B function is the HP 16C’s number of...