Showing posts with label labels. Show all posts
Showing posts with label labels. Show all posts

Sunday, January 14, 2024

Swiss Micros DM32: Remote XEQ: Calling Program from Other State Files

Swiss Micros DM32:   Remote XEQ:  Calling Program from Other State Files



Required Firmware:  2.07 or later


The Swiss Micros DM32 is truly an enhanced HP 32SII, and some of the new features take this platform to the next level.   One of the newest features is the ability to call programs from other state files, which Swiss Micros calls Remote XEQ.  


What is a state file?  A state file is a calculator file that contains its set of programs, equations, variables, and settings.   Since the DM32, like the HP 32SII, has only have one letter label names, state files are the way to expand and organize lots of programs and equations without having to re-program the calculator every time.


Calling programs from other state files allow the use of programs from other available state files.  How do you know if a state file is available?  Press the fourth key from the left on the top row of keys.  There will be a list of available states loaded into calculator memory.   If the state file that you need isn't listed, select Load (second key from the left on the row of blank keys in the Available States menu) and load the required state file. 


As of Firmware 2.07, we can only execute remote labels in programs, not from the home screen.  



Using Remote XEQ in a Program



1.  Make sure your source state file is available. 


2.  In the program, press [ XEQ ] twice.   ( [ XEQ ] [ XEQ ])   You will be taken to a screen of available state files.


3.  Select the source state file.  In the Available States screen, use the plus [ + ] and minus [ - ] keys to scroll the cursor.  Press [ ENTER ].


4.  Insert the required label from the source file.   All variables in the remote execution are considered local.



Communication Note:   When you have a program that uses remote XEQ, be sure upload both the source and the current state files, and communicate that both files have to be available (active) to those you download your programs.  



Example


Let's assume the following states are available:  demo.d32 and clean.d32.   The demo file is the source file containing the following program:


R01 LBL R

R02 1/x 

R03 x<>y

R04 1/x 

R05 +

R06 1/x 

R07 RTN


This calculates 1/(1/x + 1/y).   


In the clean file, we can call program R from demo by:


A01 LBL A

A02 XEQ R:DE 

 

(Press [ XEQ ] [ XEQ ], select demo from the list of available states, [ ENTER ] , R)


A03 RTN


Now executing program A in the clean state will execute program R in the demo state.



In the demo state:

4 [ ENTER ] 9 [ XEQ ] R  returns 2.7692    (FIX 4 mode is set)


In the clean state:

4 [ ENTER ] 9 [ XEQ ] A  returns 2.7692    (FIX 4 mode is set)



Source


SwissMicros GmbH  "DM32 User Manual"  v3.46b 2016-2023

https://technical.swissmicros.com/dm32/doc/dm32_user_manual.html



I hope you find this new feature useful,


Eddie


All original content copyright, © 2011-2024.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 


Monday, April 25, 2022

Retro Review: Texas Instruments TI-57 LCD

Retro Review:   Texas Instruments TI-57 LCD











Quick Facts:


Model:  TI-57 LCD

Company:  Texas Instruments

Years:  1982-1984

Type:  Programming

Batteries: 2 x LR44

Operating Mode:  AOS

Memory Registers: Minimum of 1, Maximum of 8

Program Steps:  Minimum of 0, Maximum of 48


Similar to many Texas Instruments programming calculators of the 1970s and 1980s, the memory can be partition between memory steps and program steps by the [ 2nd ] [ Part ] key sequence.  Each register has 8 program steps.  


Some Partitions:


Part 1:  1 register (R0), 48 steps

Part 2:  2 registers (R0, R1), 40 steps

Part 3:  3 registers (R0, R1, R2), 32 steps

Part 4:  4 registers (R0, R1, R2, R3), 24 steps


Features 


* trigonometric functions and inverses

* polar/rectangular conversions and degrees/degrees-minutes-seconds conversions

* integer part (Intg), fractional part (Frac), absolute value ( |x| )

* logarithms (log, ln x)

* storage arithmetic ([STO] followed by +, -, ×, ÷, y^x, INV y^x)


INV Key combinations


[ INV ] [ sin ]:  arcsin

[ INV ] [ cos ]: arccos

[ INV ] [ tan ]:  arctan

[ 2nd ] [ INV ] (P<>R):  rectangular to polar

[ 2nd ] [ INV ] (DMS-DD):  degrees to degrees-minutes-seconds

[ INV ] [ y^x ]:  y^(1/x)

[ INV ] [ log ]:  10^x

[ INV ] [ ln ]: e^x

[ 2nd ] [ INV ] (SBR):  RETURN - this ends subroutines

[ 2nd ] [ INV ] (Dsz):  Decrement R0 by 1 and skip if R0 ≠ 0


Polar to Rectangular:

r [ x<>t ] θ [ 2nd ] [ P<>R ]:   y [ x<>t ] x


Rectangular to Polar:

x [ x<>t ] y [ 2nd ] [ INV ] [ P<>R ]:   θ [ x<>t ] r


Keystroke Programming


The TI-57 LCD is a keystroke programmable calculator.   However, programming steps are at a premium with a maximum of 48 steps (allowing for one memory register) to 0 (yes, zero) if you use all 8 registers (R0 to R7).  


Programming commands include:


*  Test with the t register:  x=t,  x≥t, and inverses

*  Decrement and Skip:  either skip on zero or not on zero.  This command works on register 0.  

*  Labels and Go to commands:  labels 0-9

*  Pause command

*  Subroutines (SBR)

*  Go to step zero (RST)


Thankfully some steps are merged, mainly with the [ INV ] key, [ GTO ] key (GO TO command), [ 2nd ] key, and storage arithmetic.  


What is interesting is that there are no statistical functions on the TI-57 LCD.   See the One Variable Statistics section for a 25-step program to add one-variable statistics.  


Keyboard


We need to talk about the keyboard.  The keyboard looks good.  I have the United States edition of the TI-57 LCD and I like the blue, gray, black, and white color scheme.   


Unfortunately, some keys are hard to press and other keys can produce a double-stroke.  With the calculator I got, one wrong press gives a double number (22 instead of 2, 00 instead of 0) while some keys pressed in the "wrong" way do not register.  This does not allow for fast typing.   I think I found the keys "sweet spots":  the right side of the keys.    


The keyboard difficulties are a common complaint with the TI-57 LCD.   They are corrected with the TI-57 II released in 1986.  


TI-57 LCD Program:  One Variable Statistics

Memory Registers Required: 3  (Part 3)


00  23.01     LBL 1   // data entry

01  61.85.01 STO+ 1

02  34 x^2

03  61.85.02 STO+ 2

04  1 1

05  61.85.00 STO+ 0

06  13 R/S

07  22.01     GTO 1


08  23.02     LBL 2   // calculation

09  71.01    RCL 1

10  55 ÷

11  71.00     RCL 0

12  95 =

13  13 R/S   // sample mean

14  71.02     RCL 2

15  55 ÷

16  71.00     RCL 0

17  75 -

18  53 (

19  71.01     RCL 1

20  55 ÷

21  71.00     RCL 0

22  54 )

23  34 x^2

24  95 =

25  35

26  13 R/S  // population deviation


Registers used:

R0 = number of data points = n

R1 = sum of the data points = Σx

R2 = sum of the data points squared = Σx^2


Mean:

x-bar = Σx / n


Population Deviation

σx = √( Σx^2/n - (Σx/n)^2 )


Instructions:

1.  If necessary, partition memory to fit 3 memory registers (R0, R1, R2).  [ 2nd ] (Part) [ 3 ].

2.  Enter the first point, press [ GTO ] [ 1 ], then [ R/S ].  1 is displayed when data points are entered.

3.  Enter each subsequent point, press [ R/S ].  Repeat until finished.  

4.  To calculate the mean and population deviation, press [ GTO ] [ 2 ].   The mean is displayed first, press [ R/S ] to display population deviation.  


[ RCL ] [ 0 ]:  number of points

[ RCL ] [ 1 ]:  sum of data points

[ RCL ] [ 2 ]:  sum of squares of data points


Example 1:


Data Set: 4, 5, 9, 8, 6


Results:

n = 5

Σx = 32

Σx^2 = 222

x-bar = 6.4

σx = 1.854723699


Example 2:


Data Set: 11058, 12360, 12445, 12761, 13002, 13360


Results:

n = 6

Σx = 74986

Σx^2 ≈ 9.40 * 10^8

x-bar = 12497.66667

σx = 725.9110757


Closing Thoughts


I wish the TI-57 LCD had both more memory and functions.   Honestly, Texas Instruments could combine the functions of the TI-57 LCD (tests, labels, go to, decrement and skip), the TI-55 III (better keyboard, linear regression, integrals, unit conversions, signum function, permutations, combinations), and the later TI-60 (the TI-55III with base conversions) with a total of 188 steps.  The programming set up with the TI-57 LCD wins with it's merged steps with INV, STO, LBL, and GTO.   


Overall, I like the appearance of the TI-57 LCD, despite the keyboard's set backs. That, the lack of functions and statistics, and the sometimes slow execution and we can see why the TI-57 LCD was not a best seller.  


HP 32S and HP 32SII Week:  May 2, 2022 - May 6, 2022


Until next time,


Eddie


All original content copyright, © 2011-2022.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 



RPN HP 12C: Fibonacci and Lucas Sequences

  RPN HP 12C: Fibonacci and Lucas Sequences Golden Ratio, Formulas, and Sequences Let φ be the Golden Ratio: φ = (1 + √5) ÷ 2...