**Synthetic Division**

Goal: Divide the polynomial p(x) = a_n x^n + a_(n-1) x^(n-1) + ... + a_0 by (x - r).

p(x) ÷ (x - r) = q_n x^n + q_(n-1) x^(n-1) + ... + q_0 with remainder E

Input: A list of coefficients {a_n, a_(n-1), a_(n-2), ... , a_0} (List 1)

Output: Resulting coefficients {q_n, q_(n-1), ... , q_0, E} (List 2)

Example: (2x^3 + x - 3) ÷ (x - 3) = 2x^2 + 6x + 19 + 54 ÷ (x - 3)

List 1: {2, 0, 1, -3}, R = 3

List 2: {2, 6, 19, 54}

Casio Prizm

POLYSYN

Synthetic Division - 160 bytes

"P(X) ÷ (X-R)"

"{AnX^n,...,A0}"

"LIST:"?→List 1

"R"?→R

List 1 → List 2

For 1→K To Dim List 1 - 1

R × List 2[K] + List 1[K+1] → List 2[K+1]

Next

"LAST TERM = REMAINDER" ◢

List 2

TI-84+

POLYSYN

Synthetic Division - 143 bytes

: Disp "P(X)/(X-R)"

: Disp "{AnX^n,...,A0}"

: Input "LIST:", L1

: Input "R:", R

: L1->L2

: For(K,1,dim(L1)-1)

: R*L2(K)+L1(K+1)->L2(K+1)

: End

: Disp "LAST TERM=", "REMAINDER"

: Pause L2

HP 39gii

POLYSYN

Synthetic Division

11/23/2012

L1 and A are prompted. The resulting is a list of coefficients, with the last term the remainder

Example: (21x^2 + 42x + 144)/(x - 12) = 21x + 294 + 3672/(x-12)

Output List: {21, 294, 3672}

EXPORT POLYSYN()

BEGIN

LOCAL K,S,T;

EDITLIST(L1);

INPUT(R,"P(X)/(X-R)");

L1 → L2;

SIZE(L1)→ S;

S-1 → T;

FOR K FROM 1 TO T DO

R * L2(K) + L1(K+1) → L2(K+1);

END;

MSGBOX("LAST TERM=REMAINDER");

RETURN L2;

END;

This blog is property of Edward Shore. 2012

this for creating an app or what. seems interesting this codes for solving the synthetic division

ReplyDeletethis for creating an app or what. seems interesting this codes for solving the synthetic division

ReplyDelete