Sunday, December 2, 2012

Numeric CAS - Part 4: Polynomial Multiplication

Polynomial Multiplication

Goal: Multiply two polynomials: p1(x) * p2(x) = p3(x)

Inputs: Coefficients of p1(x) and p2(x) as List 1 and List 2, respectively

Output: Coefficients of p3(x) as List 3.

The lists are in order from highest order to constant. Zeros are used as place holders.

Example: (x^3 + 2x - 1) * (-2x^2 + x - 4) = -2x^5 + x^4 - 8x^3 + 4x^2 - 9x + 4

Input:
List 1: {1, 0, 2, -1}
List 2: {-2, 1, -4}

Output:
List 3: {-2, 1, -8, 4, -9, 4}


Casio Prizm:

POLYMULT
Multiplication of Two Polynomials
11/21/2012 - 176 bytes

"{AnX^n,...,A0}"
"P1(X)"? → List 1
"P2(X)"? → List 2
Dim List 1 + Dim List 2 - 1 → Dim List 3
For 1 → K To Dim List 1
List 1[K] × List 2 → List 4
For 1 → J To Dim List 4
List 3[J + K - 1] + List 4[J] → List 3[J + K - 1]
Next
Next
List 3


Example:
(x^2 + 3x - 1)(x^2 - 4) = x^4 + 3x^3 - 5x^2 - 12x + 4
List 1: {1,3,-1}
List 2: {1,0,-4}
Result List 3: {1,3,-5,-12,4}


TI-84+:

POLYMULT
Multiplication of two Polynomials
{AnX^n,...,A0}
11/21/2012 - 154 bytes

To get the lower case "n" character: VARS, 5, 1

Disp "{AnX^n,...,A0}"
Input "P1(X)=", L1
Input "P2(X)=", L2
dim(L1) + dim(L2) - 1 → dim(L3)
Fill(0,L3)
For(K, 1, dim(L1))
L1(K) * L2 → L4
For(J, 1, dim(L4))
L3(J + K - 1) + L4(J) → L3(J + K - 1)
End
End
Pause L3


HP 39gii:

Polynomial Multiplication (FULL)
12/2/2012

EXPORT POLYMULT()
BEGIN
LOCAL S,K,J;
EDITLIST(L1);
EDITLIST(L2);
SIZE(L1)+SIZE(L2)-1 → S;
MAKELIST(0,X,1,S,1) → L3;
FOR K FROM 1 TO SIZE(L1) DO
L1(K)*L2 → L4;
FOR J FROM 1 TO SIZE(L4) DO
L3(J+K-1) + L4(J) → L3(J+K-1);
END;
END;
RETURN L3;
END;





This blog is property of Edward Shore. 2012





BA-54: Real Estate Programs

BA-54: Real Estate Programs BA-54:  Chris won this calculator at HHC 2024 and donated it to me.   Much appreciation as always.  ...