Saturday, February 16, 2013

a_(n+1) = a_n + n + C (from Stories Cafè in Echo Park in Los Angeles)

Good afternoon all! This is a Saturday Afternoon/Night blog post. On the menu: much needed delicious food from Stories Cafè in Los Angeles and some work with recurrence relations.

But first, an announcement! I am working on a short series of programming tutorials of the Hewlett Packard HP 39gii Calculator. Think of it as a short boot camp to get HP 39gii owners up and running.

An emulator for the HP 39gii can be found here: http://www.hp.com/sbso/product/calculators-emulators/graphic-calculator-emulators.html. The emulators are for Widows and probably Mac - not sure if they run on other operating systems. As of today, I am not aware if there are any iOS and/or Android apps for this. I aim to post this series in March 2013.

Now on to the math...

a_(n+1) = a_n + n + C

The goal is to find a general formula for

(I) a_(n+1) = a_n + n + C with the initial condition a_0 = A_0.

The type of recursion formula presented is polynomial recurring relation. A general polynomial recursion formula takes the form a_(n+1) = a_n + p(n).

The general formula for a_(n+1) = a_n + n + C takes the form:

(II) a_n = c_2 * n^2 + c_1 * n + c_0

Mainly, with recursion formula of polynomial type will require a formula of order n+1. There are n+2 constants to solve for.

Working with equation (II) above, we will need to solve for c_0, c_1, and c_2. It would be very difficult to work with only one equation. Luckily, we can turn this problem in to a system of three linear equations.

Starting with the initial condition a_0 = A_1, we can use the recursion formula for n=1 and n=2 to find a_1 and a_2. Then we get the system:

(III)
a_0 = c_0 (where n=0)
a_1 = c_0 + c_1 + c_2 (where n=1)
a_2 = c_0 + 2 * c_1 + 4 * c_2 (where n=2)

Putting (III) in matrix form we get:

(IV)
[ [1, 0, 0], [1, 1, 1], [1, 2, 4] ] * [ [c_0], [c_1], [c_2] ] = [ [a_0], [a_1], [a_2] ]

For the Hewlett Packard HP 50g calculator owners (others may have this function/program), you can get the matrix on the left hand side of equation (IV) by using the VANDERMONDE matrix function on the vector [0, 1, 2]. This function comes in handy for these types of problems.

Continuing with the ever handy HP 50g, solving for c_0, c_1, and c_2:

(V)
[ [c_0],[c_1],[c_2] ] = [ [1, 0, 0],[-3/2, 1, -1/2],[1/2, -1, 1/2] ] * [ [a_0], [a_1], [a_2] ]

And we finish with:
(VI)
c_0 = a_0
c_1 = -3/2 * a_0 + 2 * a_1 - 1/2 * a_2
c_2 = 1/2 * a_0 - a_1 + 1/2 * a_2


So in summary:
The general formula for the recursion formula

a_(n+1) = a_n + n + C is:

c_0 = a_0
c_1 = -3/2 * a_0 + 2 * a_1 - 1/2 * a_2
c_2 = 1/2 * a_0 - a_1 + 1/2 * a_2



A numerical example:

a_(n+1) = a_n + n - 2 with a_0=3

Prepare by finding a_0, a_1, and a_2:

a_0 = 3 (given)
a_1 = 3 + 1 - 2 = 2 (use n=1)
a_2 = 2 + 2 - 2 = 2 (use n=2)

Then:
c_0 = 3
c_1 = -3/2 * 2 + 2 * 2 - 1/2 * 2 = -3/2
c_2 = 1/2 * 2 - 2 + 1/2 * 2 = 1/2

Our general formula is:
a_n = 1/2 * n^2 - 3/2 * n + 3

Let's test it out.

With n=1:
a_1 = 1/2 - 3/2 + 3 = 2 (checks out)

With n=3
a_3 = 1/2 * 3^2 - 3/2 * 3 + 3 = 3

Observe from the recursion formula a_3 = 2 + 3 - 2 = 3. (Checks out)

With n=4
a_4 = 1/2 * 4^2 - 3/2 * 4 + 3 = 5


Warning: The above technique only works when the coefficient of a_n is 1. (See (I).)

I tried this technique with a_(n+1) = -3*a_n + 7*n - 1 with a_0 =1.

With a_1 = 5 and a_2 = 0 from the recursion formula, I came up with a_n = -9/2 * n^2 + 17/2 * n + 1. Using this formula I came up with a_3 = -14, when in reality a_3 = 22. Just a heads up.


I hope this weekend and all your future days are good to you.

Eddie


This blog is property of Edward Shore. 2013

Fun with the HP 30b

Fun with the HP 30 b Introduction The following programs are for the HP 30b Business Professional. Did you know that the 30b...