Monday, August 19, 2013

Differential Equations #7: Laplace Transforms and Systems of Differential Equations

In this blog we will look at how Laplace transforms assist us in solving systems of differential equations.

In the examples tonight, I have design the y(x) and z(x) as the equations to solve for, and designate:

L(y) = F(s) (which I will shorten to F)
L(y') = s*F - y(0)

L(z) = G(s) (which I will shorten to G)
L(z') = s*G - z(0)


As a reference:
L( f(t) ) → F(s)
1 → 1/s
t^n → n!/(s^(n+1))
e^(a*t) → 1/(s-a)
sin(a*t) → a/(s^2 + a^2)
t*sin(a*t) → (2*a*s)/((s^2 + a^2)^2)
cos(a*t) → s/(s^2 + a^2)
t*cos(a*t) → (s^2 - a^2)/((s^2 + a^2)^2)
sinh(a*t) → a/(s^2-a^2)
cosh(a*t) → s/(s^2-a^2)
e^(a*t)*sin(b*t) → b/((s-a)^2 + b^2)
e^(a*t)*cos(b*t) → (s-a)/((s-a)^2 + b^2)
e^(a*t)*sinh(b*t) → b/((s-a)^2 - b^2)
e^(a*t)*cosh(b*t) → (s-a)/((s-a)^2 - b^2)


For this, it would be best to show how to solve systems by example.

Examples:

1. y' = 2*y + z
z' = -2y
Initial Conditions: y(0)=1, z(0)=-1


Using the transforms above, the result is:
s*F - 1 = 2*F + G
s*G + 1 = -2*F

-1 = (2-s)*F + G
1 = -2*F - s*G

Solving for F and G:

F = (s-1)/(s^2 - 2*s + 2)
G = (-s)/(s^2 - 2*s + 2)

Taking inverse Laplace Transforms for both F and G:

F = (s-1)/(s^2 - 2*s + 2)
F = (s-1)/(s^2 - 2*s + 1 + 1)
F = (s-1)/((s-1)^2 + 1)
L⁻¹(F) = y = e^x * cos x

G = (-s)/(s^2 - 2*s + 2)
G = (-s)/((s - 1)^2 + 1)
G = (-s - 1 + 1)/((s-1)^2 + 1)
G = -(s - 1)/((s-1)^2 + 1) - 1/((s-1)^2 + 1)
L⁻¹(G) = z = -e^-x * cos x - e^x * sin x

y = e^x * cos x
z = -e^-x * cos x - e^x * sin x

2. y' + z = x
z' + 4*y = 0
Initial Conditions: y(0)=1, z(0)=-1


L(x) = 1/s^2

Then:
s*F - 1 + G = 1/s^2
s*G + 1 + 4*F = 0

s*F + G = 1/s^2 + 1
4 * F + s*G = -1

F = (s^2 + s + 1)/(s^3 - 4*s)
G = (-s^3 - 4*s^2 - 4)/(s^4 - 4*s^2)

Finding y and z:

F = (s^2 + s + 1)/(s^3 - 4*s)
F = -1/4 * 1/s + 3/8 * 1/(s+2) + 7/8 * 1/(s-2)
L⁻¹(F) = y = -1/4 + 3/8 * e^(-2x) + 7/8 * e^(2x)

G = (-s^3 - 4*s^2 - 4)/(s^4 - 4*s^2)
G = 1/s^2 + 3/4 * 1/(s + 2) - 7/4 * 1/(s-2)
L⁻¹(G) = z = x + 3/4 * e^(-2*x) - 7/4 * e^(2*x)

y = -1/4 + 3/8 * e^(-2x) + 7/8 * e^(2x)
z = x + 3/4 * e^(-2*x) - 7/4 * e^(2*x)

3. y' + z' = 3
y - z = x
Initial Conditions: y(0) = 1, z(0) = 0


s*F - 1 + s*G = 3/s
F - G = 1/s^2

F = (s + 4)/(2*s^2)
F = s/(2*s^2) + 4/(2*s^2)
F = 1/(2*s) + 2/(s^2)
L⁻¹(F) = y = 1/2 + 2*x

G = (s + 2)/(2*s^2)
G = s/(2*s^2) + 2/(2*s^2)
G = 1/(2*s) + 1/(s^2)
L⁻¹(G) = z = 1/2 + x

y = 1/2 + 2*x
z = 1/2 + x

This concludes our section for Differential Equations. Hope this is helpful and thanks as always! Eddie

Update: There will be more of the Differential Equations series! Look for additional posts during September 2013. Eddie - 8/30/13

This blog is property of Edward Shore. 2013



HHC 2025 Videos

  HHC 2025 Videos The talks from the HHC 2025 conference in Orlando, Florida are starting to be up on hpcalc’s YouTube page within th...