I used the classic HP 12C, with the 99 step capacity. Even without the trig functions, we can do a lot.
Eddie
Calculating f(x) = p * ∑(a^k, k=1 to n) using the TVM Keys
Input:
[ n ] = nR0 = a
R1 = p
Program:
STEP

KEY

CODE

01

BEGIN

43 7

02

RCL 0

45 0

03

1

1

04



30

05

EEX

26

06

2

2

07

*

20

08

[i]

12

09

RCL 1

45 1

10

CHS

16

11

[PMT]

14

12

[FV]

15

13

END

43 8

14

GTO 00

43 33 00

Examples:
n = 60, R0 = 1.01, R1 = 350.
Result: 28,870.2283
n = 5, R0 = 2, R1 = 10.05.
Result: 623.1
Heron’s Formula
Area of a Triangle with side lengths a, b, and c.
Area = √(s*(sa)*(sb)*(sc)) where s = (a+b+c)/2
Input:
R1 = aR2 = b
R3 = c
Program:
STEP

KEY

CODE

01

RCL 1

45 1

02

RCL 2

45 2

03

+

40

04

RCL 3

45 3

05

+

40

06

2

2

07

÷

10

08

STO 4

44 4

09

RCL 4

45 4

10

RCL 1

45 1

11



30

12

RCL 4

45 4

13

RCL 2

45 2

14



30

15

*

20

16

RCL 4

45 4

17

RCL 3

45 3

18



30

19

*

20

20

RCL 4

45 4

21

*

20

22

√

43 21

23

GTO 00

43

Example: a = 5, b =
5, c = 6. Result: 12
Projectile Motion without Air Resistance: With the projectile being launched at 45° at
velocity V. The maximum distance will be
achieved at these conditions.
Theoretical Maximum Distance:
R_max = v^2/g (in feet)
Theoretical Height of the Projectile (at x = R_max/2)
H = v^2/(4g) (in
feet)
Where g = 32.17404 ft/s^2
If you desire meters, substitute g = 9.80665 m/s^2 instead.
Run the program with V in the display. The velocity is assumed to be
feet/second. The maximum distance is
calculated, then the projectile’s theoretical height.
Program:
STEP

KEY

CODE

01

2

2

02

Y^X

21

03

3

3

04

2

2

05

.

48

06

1

1

07

7

7

08

4

4

09

0

0

10

4

4

11

÷

40

12

R/S

31 (display R)

13

4

4

14

÷

40

15

GTO 00

43 33 00 (display H)

Factorials of Large Integers
N! = N * (N1) *
(N2) * … * 1
**For large n, this program will take time if you have an HP
12C that was manufactured in the 1980s.
Input n, press R/S.
The mantissa is displayed.
Press R/SThe exponent is displayed (10^exponent).
STEP

KEY

CODE

01

STO 0

44 0

02

0

0

03

STO 1

44 1

04

RCL 0

45 0

05

LN

43 23 // loop
begins

06

STO+ 1

44 40 1

07

1

1

08

STO 0

44 30 0

09

RCL 0

45 0

10

1

1

11



30

12

X=0

43 35

13

GTO 15

43 33 15 // end of
loop

14

GTO 04

43 33 04

15

RCL 1

45 1

16

1

1

17

0

0

18

LN

43 23

19

÷

10

20

STO 1

44 1

21

ENTER

36

22

FRAC

43 24

23

1

1

24

0

0

25

X<>Y

34

26

Y^X

21

27

R/S

31 // mantissa

28

X<>Y

34

29

INTG

43 25 // exponent

30

GTO 00

43 33 00

Example:
50! »
3.0414 * 10^64
50 R/SResult: 3.0414 R/S 64
76! »
1.8855 * 10^111
76 R/SResult: 1.8855 R/S 111
Degrees Minutes Seconds to Decimal Degrees
2°51’32.4” > 2.859
Type input as DD.MMSSSS (degrees, minutes, seconds). For our
example, the input would be 2.51324.
STEP

KEY

CODE

01

STO 0

44 0

02

INTG

43 25

03

STO 1

44 1

04

RCL 0

45 0

05

FRAC

43 24

06

EEX

26

07

2

2

08

*

20

09

INTG

43 25

10

6

6

11

0

0

12

÷

10

13

STO+ 1

44 40 1

14

RCL 0

45 0

15

EEX

26

16

2

2

17

*

20

18

FRAC

43 24

19

3

3

20

6

6

21

÷

10

22

STO+ 1

44 40 1

23

RCL 1

45 1

24

GTO 00

43 33 00

Decimal Degrees to Degrees Minutes Seconds
Answer displayed as DD.MMSSSS (degrees minutes seconds)
Program:
01

STO 0

44 0

02

INTG

43 25

03

STO 1

44 1

04

RCL 0

45 0

05

FRAC

43 24

06

6

6

07

0

0

08

*

20

09

ENTER

36

10

INTG

43 25

11

EEX

26

12

2

2

13

÷

10

14

STO+ 1

44 40 1

15

RDown

33

16

FRAC

43 24

17

6

6

18

0

0

19

*

20

20

EEX

26

21

4

4

22

÷

10

23

STO+ 1

44 40 1

24

RCL 1

45 1

25

GTO 00

43 33 00

No comments:
Post a Comment