Monday, October 20, 2014

Quick Approximation: Declination and Right Ascension of the Sun

CAUTION:  The formulas presented provide a quick, but crude approximation of the position of our sun.  Search for astronomical algorithms if you want more accurate formulas and algorithms. 

I thought it would be fun if I could try to use the curve fitting features of a calculator to obtain an approximate formula of the position of the sun.  Like longitude and latitude on Earth, the celestial objects (planets, stars, comets, asteroids, etc...) are mapped using a system of coordinates:

Right Ascension - measured in hours-minutes-seconds (0:00:00 to 23:59:59.99)
Declination - measured in degrees-minutes-seconds (0° to 359°59'59.99")

I used an HP Prime to take a sample of points and used the curve-fitting features in the Statistics 2Var app. 

 The sources are:

Right Ascension:

Right Ascension Table - 2014. Data calculated by Kevin Krisciunas - Texas A&M University.  Webpage retrieved October 15, 2014. 

Link:  http://people.physics.tamu.edu/krisciunas/ra_dec_sun_2014.html

For the approximation formula, I chose 100 random points.

Declination:

"Table of the Declination of the Sun.   Mean Value for the Four Years of a Leap-Year Cycle"
Data compiled by Walter Sanford.  Webpage retrieved October 16, 2014.

Link:  http://www.wsanford.com/~wsanford/exo/sundials/DEC_Sun.html

For the approximation formula, I chose 120 random points.

These formulas are based on the 365-day calendar, where x is the number of days from March 21.  Use radians mode:

Right Ascension (100 random points):
a = 0.0659021173575*x - 0.0873505413785

Declination (120 random points):
d = 23.2834823404 * sin(0.0171866755814*x - 0.0283271293265) + 0.391501633262


This blog is property of Edward Shore.  2014











 

HP 67 Programs… Almost 50 Years Later

  HP 67 Programs… Almost 50 Years Later Both downloads are in PDF format. This is for use for the HP 67 and its emulators, or really...