HP 15C:  Coordinates
on an Ellipse
Store the following values before running:
R0 = number of points. 
θ always starts at 0° to 360° in equal increments.
R1 = a, length of horizontal semi-axis
R2 = b, length of vertical semi-axis
R3 is used as a counter.
The center is assumed to be (0,0).
Program:
| 
Step | 
Key | 
Key Code | 
| 
001 | 
LBL B | 
42, 21, 12 | 
| 
002 | 
DEG (Degrees mode) | 
43, 7 | 
| 
003 | 
RCL 0 | 
45, 0 | 
| 
004 | 
1 | 
1 | 
| 
005 | 
- | 
30 | 
| 
006 | 
3 | 
3 | 
| 
007 | 
10^X | 
13 | 
| 
008 | 
÷ | 
10 | 
| 
009 | 
STO 3 | 
44, 3 | 
| 
010 | 
3 | 
3 | 
| 
011 | 
6 | 
6 | 
| 
012 | 
0 | 
0 | 
| 
013 | 
RCL÷ 0 | 
45, 10, 0 | 
| 
014 | 
STO 4 | 
44 ,4 | 
| 
015 | 
LBL 2 | 
42, 21, 2 | 
| 
016 | 
RCL 3 | 
45, 3 | 
| 
017 | 
INT | 
43, 44 | 
| 
018 | 
R/S | 
31 | 
| 
019 | 
RCL* 4 | 
45, 20, 4 | 
| 
020 | 
ENTER | 
36 | 
| 
021 | 
COS | 
24 | 
| 
022 | 
RCL* 1 | 
45, 20, 1 | 
| 
023 | 
R/S | 
31 | 
| 
024 | 
X<>Y | 
34 | 
| 
025 | 
SIN | 
23 | 
| 
026 | 
RCL* 2 | 
45, 20, 2 | 
| 
027 | 
R/S | 
31 | 
| 
028 | 
ISG 3 | 
42, 6, 3 | 
| 
029 | 
GTO 2 | 
22, 2 | 
| 
030 | 
RTN | 
43, 32 | 
Outputs:
Point number (0 through n-1), [ R/S ]
X coordinate [ R/S ],
Y coordinate [ R/S ]
The program continues until all the points are revealed.
Example:
R0 = 6,  R1 =
1.2500,  R2 = 2.4700  (FIX 4 mode)
| 
Point # | 
X | 
Y | 
| 
0 | 
1.2500 | 
0.0000 | 
| 
1 | 
0.6250 | 
2.1391 | 
| 
2 | 
-0.6250 | 
2.1391 | 
| 
3 | 
-1.2500 | 
0.0000 | 
| 
4 | 
-0.6250 | 
-2.1391 | 
| 
5 | 
0.6250 | 
-2.1391 | 

