HP 15C:  Digital
Root, Modulus, and 2D Coordinate Rotation
Note:  steps are
for reference points only.
HP 15C: Digital Root
Input: Enter an integer and execute Label A (or whatever
label you want to assign).
Program:  
| 
Step | 
Key | 
Key Code | 
| 
001 | 
LBL A | 
42, 21, 11 | 
| 
002 | 
ENTER | 
36 | 
| 
003 | 
ENTER | 
36 | 
| 
004 | 
1 | 
1 | 
| 
005 | 
- | 
30 | 
| 
006 | 
9 | 
9 | 
| 
007 | 
÷  | 
10 | 
| 
008 | 
INT | 
43, 44 | 
| 
009 | 
9 | 
9 | 
| 
010 | 
* | 
20 | 
| 
011 | 
- | 
30 | 
| 
012 | 
RTN | 
43, 32 | 
Formula used: 
(Define DR(n) as the digital root function)
DR(n) = n – 9 * int((n-1)/9), n > 0
DR returns the sum of n’s digits and repeats until a
single digit remains.
Examples:
DR(4514) = 5
DR(9376) = 7
DR(636088) = 4
DR(761997) = 3
HP 15C:  Modulus
Function
Input:  
Y:  A
X:  B
The program calculates A mod B.
Program:
| 
Step | 
Key | 
Key Code | 
| 
001 | 
LBL B | 
42, 21, 2 | 
| 
002 | 
STO 2 | 
44, 2 | 
| 
003 | 
X<>Y | 
34 | 
| 
004 | 
STO 1 | 
44, 1 | 
| 
005 | 
X<>Y | 
34 | 
| 
006 | 
÷ | 
10 | 
| 
007 | 
FRAC | 
42, 44 | 
| 
008 | 
RCL* 2 | 
45, 20, 2 | 
| 
009 | 
STO 3 | 
44, 3 | 
| 
010 | 
RCL 1 | 
45, 1 | 
| 
011 | 
RCL* 2 | 
45, 20, 2 | 
| 
012 | 
TEST 1 (x > 0) | 
43, 30, 1 | 
| 
013 | 
GTO 1 | 
22, 1 | 
| 
014 | 
RCL 3 | 
45, 3 | 
| 
015 | 
RCL+ 2 | 
45, 40, 2 | 
| 
016 | 
STO 3 | 
44, 3 | 
| 
017 | 
RTN | 
43, 32 | 
| 
018 | 
LBL 1 | 
42, 21, 1 | 
| 
019 | 
RCL 3 | 
45, 3 | 
| 
020 | 
RTN | 
43, 32 | 
Formula Used:
A mod B = B * frac(A/B) 
Add B to result if A*B < 0.  
Registers Used:
R1 = A
R2 = B
R3 = A mod B
Examples:
A = 48, B = 3, result = 0
A = 41.3, B = 12, result = 5.3
A = 48, B = -7, result = -1
A = -50.2, B = 36, result = 21.8
HP 15C:  2D
Coordinate Rotation
Input: Store the following:  X in R4, Y in R5, and θ in R3.  Run the program.  
Results are stored in R6 and R7, for X’ and Y’,
respectively. X’ is displayed first, press R/S to get Y’. 
This program uses the Polar to Rectangular conversion.
Program:
| 
Step | 
Key | 
Key Code | 
| 
001 | 
LBL C | 
42, 21, 13 | 
| 
002 | 
RCL 3 | 
45, 3 | 
| 
003 | 
RCL 4 | 
45, 4 | 
| 
004 | 
>R | 
42, 1 | 
| 
005 | 
STO 6 | 
44, 6 | 
| 
006 | 
X<>Y | 
34 | 
| 
007 | 
STO 7 | 
44, 7 | 
| 
008 | 
RCL 3 | 
45, 3 | 
| 
009 | 
RCL 5 | 
45, 5 | 
| 
010 | 
>R | 
42, 1 | 
| 
011 | 
RCL 7 | 
45, 7 | 
| 
012 | 
+ | 
40 | 
| 
013 | 
STO 7 | 
44, 7 | 
| 
014 | 
X<>Y | 
34 | 
| 
015 | 
CHS | 
16 | 
| 
016 | 
RCL 6 | 
45, 6 | 
| 
017 | 
+ | 
40 | 
| 
018 | 
STO 6 | 
44, 6 | 
| 
019 | 
R/S | 
31 | 
| 
020 | 
X<>Y | 
34 | 
| 
021 | 
RTN | 
43, 32 | 
Formulas Used:
X’ = X * cos θ – Y * sin θ
Y’ = X * sin θ + Y * cos θ 
Examples:
X (R4) = 1, Y (R5) = 2, θ (R3) = 30°.   Results: X’ (R6) ≈ -0.1340,  Y’ (R7) ≈ 2.2321
X (R4) = 6.45, Y (R5) = 5.25, θ (R3) = 176°.  Results: 
X’ (R6) ≈ -6.8005, Y’ (R7) ≈ -4.7872
Until next time, be safe everyone!
Eddie
This blog is property of Edward Shore.  2016
