Sunday, March 20, 2016

Programming with the PrgCalcPro iOS App




App Creator: SekApps
Price: I paid $0.99
Platform: iOS
Memory: 1,000 steps with 100 registers 

The PrgCalcPro is based on the Russian scientific calculator Elektronika MK-61.  The MK-61 was in production from 1981 to 1993.  Originally the MK-61 had 15 memory registers and 105 steps.  There are Boolean operations but no built in statistics mode.   

The PrgCalcPro and MK-61 operated by Reverse Polish Notation (RPN), like the Hewlett Packard calculators.  The calculator has 4 stacks. 

The PrgCalcPro has more English key labels instead of Russian.  You can find notes of the MK-61 here:

http://www.thimet.de/CalcCollection/Calculators/Elektronika-MK-61/CmdRef.html


Programming Notes:

M is STO, R is RCL.  There are 15 readily accessible memory registers available from the keyboard:  0-9, a, b, c, d, and e. 

Angle mode is determined by a manual switch.  Unfortunately it can't be programmed (I don't think).  

Certain symbols are used:
[x] Integer Part
{x} Fractional Part
MAX. The maximum of y and x. 
SIG.  Sign of x
Bx. Last X recall. 
lg Common logarithm (base 10, LOG)
tg Tangent function (TAN)
A small recycling symbol ([ F ], [ . ]) represents the Roll Down function. 
<--> represents the exchange function (X<>Y)
x^y: Power function where the base is on the x stack and the exponent is on the y stack.  The exponent remains of the y stack upon calculation and is not "consumed".  

This blog entry will have basic programs, and additional programs will follow on the next few blog entries.  


Eccentricity of an Ellipse
a ≥ b, b is entered first

0: 13  ;  /
   1: 22  ;  X^2
   2: 0B  ;  +/-
   3: 01  ;  1
   4: 10  ;  +
   5: 21  ;  sqr \\ √ 
   6: 50  ;  STOP


The Average of Non-Zero Numbers

Keep entering numbers using n, [RUN].  When you are done, enter 0, [RUN].  The display will show sum (memory 0), press [RUN] to get the number of points (memory 1), and finally press [RUN] to get the average.  

Notes:
The tests for the ProCalcPro (and the MK-61) work slightly differently from Hewlett Packard RPN programming calculators.  

Format:
Test ( x<0, x=0, x≥0, x≠0)
Code Number (00-99), or label
Do this next command instead of test is true 

Example:
x≠0
15
R, 0
+

If the number in the display is non-zero (test is true), then recall memory register 0 and add the number to it.  If the number is zero (test is false), skip to line 15.  

Thanks to thimet.net.  http://www.thimet.de/CalcCollection/Calculators/Elektronika-MK-61/CmdRef.html

Program:   
0: 40  ;  M0
   1: 01  ;  1
   2: 41  ;  M1
   3: 50  ;  STOP
   4: 57  ;  X!=0 \\ X≠0
   5: 15 \\ Goto line 15 if X is zero
   6: 60  ;  R0
   7: 10  ;  +
   8: 40  ;  M0
   9: 61  ;  R1
  10: 01  ;  1
  11: 10  ;  +
  12: 41  ;  M1
  13: 51  ;  JMP \\ Goto line 03 (the next code is a step code number)
  14: 03
  15: 60  ;  R0
  16: 50  ;  STOP
  17: 61  ;  R1
  18: 50  ;  STOP
  19: 13  ;  /
  20: 50  ;  STOP

Quadratic Formula

Equation: Ax^2 + Bx + C = 0
Determinant: D = B^2 - 4AC
Roots:  -B/(2A) ± √(D)/(2A)

Store A, B, and C in the a, b, and c registers respectively.  
Register a: [ . ]
Register b: [ +/- ]
Register c: [ EXT ]

Output Registers:
D = determinant
Memory 0 = root 1 if D ≥0, real part if D < 0
Memory 1 = root 2 if D ≥ 0, imaginary part if D < 0
Complex Roots Format: M0 ± i*M1

   0: 6B  ;  RB // RCL B
   1: 22  ;  X^2
   2: 04  ;  4
   3: 6A  ;  RA
   4: 12  ;  *
   5: 6C  ;  RC
   6: 12  ;  *
   7: 11  ;  -
   8: 4D  ;  MD // STO D
   9: 50  ;  STOP // determinant
  10: 59  ;  X>=0 // if X≥0 Goto line 12, else Goto line 28
  11: 28
  12: 21  ;  sqr // finding the real roots, sqr = √ 
  13: 0E  ;  ^
  14: 6B  ;  RB
  15: 11  ;  -
  16: 53  ;  SUB // execute subroutine located at line 41
  17: 41
  18: 40  ;  M0
  19: 50  ;  STOP
  20: 14  ;  XY
  21: 0B  ;  +- // CHS
  22: 6B  ;  RB
  23: 11  ;  -
  24: 53  ;  SUB
  25: 41
  26: 41  ;  M1
  27: 50  ;  STOP
  28: 31  ;  abs // complex roots
  29: 21  ;  sqr
  30: 6B  ;  RB
  31: 0B  ;  +-
  32: 53  ;  SUB
  33: 41
  34: 40  ;  M0
  35: 50  ;  STOP
  36: 14  ;  XY
  37: 53  ;  SUB
  38: 41
  39: 41  ;  M1
  40: 50  ;  STOP
  41: 6A  ;  RA // subroutine 
  42: 02  ;  2
  43: 12  ;  *
  44: 13  ;  /
  45: 52  ;  RET // return 


This blog is properly of Edward Shore.  2016. 



TI 84 Plus CE: Consolidated Debts

TI 84 Plus CE: Consolidated Debts   Disclaimer: This blog is for informational and academic purposes only. Financial decisions are your ...