The functions e^x, e^-x,
e^(-x^2), erf(x) and Taylor Series
Accurate digits are
highlighted in green. Calculations are used with a TI 84 Plus CE.
e^x = 1 + x + x^2/2! +
x^3/3! + x^4/4 + … = Σ(x^n/n!, from n = 0 to ∞)
x =
|
e^x
|
10 terms
|
25 terms
|
50 terms
|
1
|
2.718281828
|
2.718281801
|
2.718281828
|
2.718281828
|
3
|
20.08553692
|
20.07966518
|
20.08553692
|
20.08553692
|
5
|
148.4131591
|
146.380601
|
148.4131591
|
148.4131591
|
9.9
|
19930.37044
|
11869.50538
|
19930.07221
|
19930.37044
|
e^(-x) = 1 – x + x^2/2! –
x^3/3! + x^4/4 - … = Σ( (-x)^n/n!, from n = 0 to ∞)
x =
|
e^(-x)
|
10 terms
|
25 terms
|
50 terms
|
1
|
0.3678794412
|
0.3678794643
|
0.3678794412
|
0.3678794412
|
3
|
0.0497870684
|
0.0533258929
|
0.0497870684
|
0.0497870684
|
5
|
0.006737947
|
0.8640390763
|
0.0067379439
|
0.006737947
|
9.9
|
5.017468206E-5
|
1207.799663
|
-0.1392914019
|
5.017463241E-5
|
I think you know where I’m
going.
e^(-x^2) = 1 – x^2 + x^4/2!
– x^6/3! + x^8/4! = Σ( (-x)^(2*n)/n!, from n = 0 to ∞)
x =
|
e^(-x^2)
|
10 terms
|
25 terms
|
50 terms
|
1
|
0.3678794412
|
0.3678794643
|
0.3678794412
|
0.3678794412
|
3
|
1.234098041E-4
|
442.2750223
|
-0.0118646275
|
1.234194001E-4
|
5
|
1.38879439E-11
|
18613495.8
|
-2834107793
|
85689.40174
|
9.9
|
2.72143414E-43
|
2.04347238E13
|
-3.10254183E24
|
7.951057508E34
|
(Something really goes
bonkers as x increases and n increases)
Error Function
erf(x) = 2/√π * ∫(e^(-t^2)
dt, 0, x)
= 2/√π * (x – x^3/3 +
x^5/(5*2!) – x^7/(7*3!) + x^9/(9*4!) - ...)
= 2/√π * Σ(
(-x^(2n+1)/((2n+1)*n!) from n = 0 to ∞ )
x =
|
erf(x)
|
10 terms
|
25 terms
|
50 terms
|
1
|
0.8427007929
|
0.8427007941
|
0.8427007929
|
0.8427007929
|
3
|
0.9999779095
|
68.58627744
|
0.9992050426
|
0.9999779095
|
5
|
1
|
4853382.901
|
-3070260210.4
|
4724.331354
|
9.9
|
1
|
1.076461715E13
|
-6.7395908E23
|
*overflows during
calculation*
(Result: 8.73442E33 from
WolframAlpha)
(erf(x) is practically 1
for x > 3)
|
Note: 9.9^(2*50+1) ≈ 3.623E100
Thoughts:
* Taylor series are great when x is near its
center point. In the all the cases
above, the center point is x = 0.
* The more simple the expression, the better
range of accuracy with less terms.
* Before you recommend a Taylor Series to
approximate f(x), check the accuracy and the range. A cautionary tale.
Eddie
This blog is property of
Edward Shore, 2016.