Casio fx7400g Plus: Program Library
Contents:
* Polar
Graphing (POLAR)
* Summation and
Integration (FX, SUMFX, INTFX)
* Binomial
Expansion (BINOMEXP)
* Forward
Triangle Intersection (FORDINT)
* Coordinates
of a Traverse (TRAVEZ)
* Quadratic
Equation (QUAD)
The classic
fx7400g (we’re talking about the early 2000s) lacked numerical integration,
summation, and polar graphing. Let’s
remedy that through programming.
Fortunately any
of the programs created on the fx7400g Plus can be translated literally to
later Casio graphing calculators.
Casio fx7400g Plus Program POLAR
Program
POLAR
ClrGraph
Rad
“THETA MIN”? → A
“THETA MAX”? → B
“THETA STEP”? → S
For A → I To B Step
S
sin (2I) → R (see note below)
PlotOn R cos I, R
sin I
Next
DrawGraph
Notes:
* This is best used when the function list is
clear.
* Set up graph screen parameters (Xmin, Xmax,
Ymin, Ymax) before hand.
* Insert polar functions by editing the 7^{th}
line (in italics), using I for θ. The
result must be stored to R (by → R).
Casio fx7400g Plus Programs FX, SUMFX, INTFX
The programs
SUMFX and INTFX will require the subroutine program FX. FX is where you insert the function f(x). The result is stored to Y.
Program
FX
X^2+1 → Y
Return
Program
SUMFX
“LOWER”? → L
“UPPER”? → U
0 → T
For L → X To U
Prog “FX”
T + Y → T
Next
“SUM=” ◢
T
Example: FX contains X^2 +1, with L = 1, U = 15. Result:
1255
Program
INTFX
“LOWER”? → L
“UPPER”? → U
“NO. PARTS”? → N
Rad
L → X
Prog “FX”
Y → T
U → X
Prog “FX”
T + Y → T
(U – L) ÷ N → H
For 1 → I To N1
L + I * H → X
Prog “FX”
If I Rmdr 2 = 0
Then T + 2*Y → T
Else T + 4*Y → T
IfEnd
Next
T * H ÷ 3 → T
“INTEGRAL=” ◢
T
Example: FX contains X^2 +1, with L = 1, U = 15, N =
24. Result: 1138.666667
Casio fx7400g Plus Program BINOMEXP
The program
BINOMEXP shows the coefficients of the binomial expansion (Ax + B)^N.
Program
BINOMEXP
“(AX+B)^N”
“A”? → A
“B”? → B
“N”? → N
For 0 → I To N
N nCr I * A^(NI) * B^I → T
“{COEF, POWER}” ◢
{T, NI} ◢
Next
Example: (2x – 3)^2
Results: {4, 2}, {12, 1}, {9, 0} (4x^2 – 12x + 9)
Casio fx7400g Plus Program
FORDINT
The program
FORDINT calculates the third point on a triangle where the coordinates of
points A (xa, xb) and B (xb, yb) are
known. Also, a line towards P point is
aimed from point A at angle α° and from point B at angle β°.
Variable

Casio
fx7400g Plus

Variable

Casio
fx7400g Plus

Variable

Casio
fx7400g Plus

xa

N

ya

S

α

A

xb

O

yb

T

β

B

xp

P

yc

U

γ

C

Source:
Casio. Casio fxFD10 Pro User’s
Guide Tokyo. 2014
Program
FORDINT
Deg
“XA”? → N
“YA”? → S
“ANGLE A”? → A
“XB”? → O
“YB”? → T
“ANGLE B”? → B
1 ÷ tan A + 1 ÷ tan
B → C
(N ÷ tan B + O ÷ tan
A + (T – S)) → P
(S ÷ tan B + T ÷ tan
A + (N – O)) → U
180 – A – B → C
“{XP, YP, C}” ◢
P ◢
U ◢
C
Example:
Point A: (1000, 950), angle towards point P: 30°
Point B: (1012, 997), angle towards point P: 44°
Result:
Point P: (approximately) (1024.49237, 975.078358)
Angle γ: 106°
Casio fx7400g Plus Program TRAVEZ
TRAVEZ calculates the new point knowing the original
coordinates, direction, and angle of travel. The angle 0° comes from due
east and rotates counterclockwise.
Program
TRAVEZ
Deg
“1ST EAST”? → E
“1ST NORTH”? → N
0 → D
Lbl 1
“DISTANCE”? → I
“ANGLE”? → A
I * cos A + E → E
I * sin A + N → N
D + I → D
“POINT” ◢
{E, N} ◢
“DONE? Y=1” ◢
? → Y
Y ≠ 1 ⇒ Goto 1
“DISTANCE =” ◢
D
Example: Initial point (1000,1000)
Distance: 750,
Angle: 276; Point {1078.396347,
254.1085785}
Distance: 600,
Angle: 35; Point {1569.887574,
598.2544403}
Distance: 700,
Angle: 118; Point {1241.25748,
1216.317755}
Total
Distance: 2050
Casio fx7400g Plus Program QUAD
The program
QUAD is the quadratic equation which finds the roots of
Ax^2 + Bx + C =
0
Yes, I just can’t
resist.
Program
QUAD
“A”? → A
“B”? → B
“C”? → C
B^2 – 4AC → D
If D≥0
Then “REAL ROOTS”◢
(B + √D) ÷ (2A) → S
(B  √D) ÷ (2A) → T
Else “ROOTS S+TI” ◢
B ÷ (2A) → S
√(Abs D) ÷ (2A) → T
IfEnd
{S, T}
Example:
A = 2.5, B =
3, C = 1.1
Roots: “REAL ROOTS”, 1.494427191, 0.294427191
A = 2.5, B =
3, C = 1.1
Roots: “ROOTS S+TI”,
0.375 ± .3665719575i (T: 3.665719575)
Happy
Thanksgiving! Eddie
This blog is
property of Edward Shore, 2016.
This comment has been removed by the author.
ReplyDelete