Sunday, November 27, 2016

TI-84 Plus and HP Prime: Differential Equations and Half-Increment Solution, Numerical Methods

TI-84 Plus and HP Prime:  Differential Equations and Half-Increment Solution, Numerical Methods

Introduction

The program HALFSTEP solves the numerical differential equation

d^2y/dt^2 = f(dy/dt, y, t)  given the initial conditions y(t0) = y0 and dy/dt (t0) = dy0

In this notation, y is the independent variable and t is the dependent variable.

The Method

Let C = f(dy/dt, y, t).  Give the change of t as Δt.

First Step:

With t = t0:
h_1/2 = dy0 + C * Δt/2
y1 = y0 + dy0 * Δt

Loop:

t = t0 + Δt
h_I+1/2 = h_I-1/2 + C * Δt
y_I+1 = y_I +h_I+1/2 * Δt

Repeat as many steps as desired.

This method was presented by Robert M. Eisberg in his 1976 calculator programming book (see source below).

Variables

The program uses the following variables:

C:  d^2y/dt^2.   Represent dy/dt as the variable A, y as the variable Y, and t as the variable T.

The program will always designate Y as the independent variable and T as the dependent variable.

Examples:

Application
C
C for HALFSTEP
Free-Fall
d^2y/dt^2 = g
“9.80665” (SI) or “32.1740468” (US)
Free-Fall with Friction
d^2y/dt^2 = g - α (dy/dt)^2
(α = F/m)
“g - α * A^2”
(sub numeric values for g, α)
Spring
d^2x/dt = -k/m * x
“-k/m * T”
(sub numeric values for k, m)
Pendulum
d^2θ/dt = -α*sin(θ)
(α = -g/l)
“-α * sin(Y)”
(sub numeric values for α)
Damped, Driven Oscillations
d^2x/dt = -α*x – β*dx/dt + γ * sin(ω*t)
“-α*Y-β*A+γ*sin(ω*T)”
(sub numeric values for α, β, γ)


HP Prime Program HALFSTEP

Input:  C.  Use single quotes to enclose d^2y/dt^2.  Represent dy/dt as A, y as Y, and t as T. 

Output:  A matrix of two columns, t and y.

EXPORT HALFSTEP(c,A,Y,D,tmax)
BEGIN
// d^2y/dt^2=C,dy0,y0,Δt,tmax
// EWS 2016-11-17
// C use single quotes
// 'dy=A, y=Y, t=T'

// Radian mode
HAngle:=0;

LOCAL mat:=[[0,Y]],T,H;
LOCAL K:=3,I;

T:=D;
H:=A+EVAL(c)*D/2;
Y:=Y+H*D;
mat:=ADDROW(mat,[D,Y],2);

FOR I FROM 2*D TO tmax STEP D DO
T:=I; A:=H;
H:=H+EVAL(c)*D;
Y:=Y+H*D;
mat:=ADDROW(mat,[I,Y],K);
K:=K+1;
END;

RETURN mat;

END;

TI-84 Plus Program HALFSTEP

Input:  For C, use enclose d^2y/dt^2 in quotes.  Represent dy/dt as A, y as Y, and t as T. 

Output:  A matrix of two columns, t and y.

"EWS 2016-11-27"
Func
Radian
Disp "D²Y/DT²=C"
Disp "USE A=DY/DT,Y,T"
Input "C, USE A STRING:",Y1
Input "DY0:",A
Input "Y0:",Y
Input "DELTA TIME:",D
Input "TIME MAX:",N
[[0][Y]]→[A]
D→T
A+Y1*D/2→H
Y+H*D→Y
augment([A],[[D][Y]])→[A]
For(I,2D,N,D)
I→T:H→A
H+Y1*D→H
Y+H*D→Y
augment([A],[[I][Y]])→[A]
End
[A]^T→[A]

Examples:

Please see the screen shots below.  Both are screen shots from the TI-84 Plus.







Source:  Eiseberg, Robert M.  Applied Mathematical Physics with Programmable Pocket Calculators  McGraw-Hill, Inc:  New York.  1976.  ISBN 0-07-019109-3


This blog is property of Edward Shore, 2016.

HP 67 Programs… Almost 50 Years Later

  HP 67 Programs… Almost 50 Years Later Both downloads are in PDF format. This is for use for the HP 67 and its emulators, or really...