Showing posts with label MoHPC. Show all posts
Showing posts with label MoHPC. Show all posts

Tuesday, December 26, 2023

HP15C: A Corrected Floor Function by Werner

HP15C: A Corrected Floor Function by Werner



A Corrected Floor Function



On November 25, 2023, I posted floor and ceiling functions for the HP 15C, DM42, and HP 27S calculators.  I also posted the code on the Museum of HP Calculators (MoHPC).


Werner informed me that the floor code was inaccurate for x=-0.5.   In fact, the code is inaccurate for all x values from -1 to 0.  


The corrected code that Werner presented, by permission, on the MoHPC forum is:


Key Code : Key


__, 43, 44 : INT

42, _4, 25:  x<> I

__, 43, 36:  LST x

__, 42, 44:  FRAC

43, 30, _2:  TEST (x<0?)

42, _5, 25:  DSE I   (decreases I, always skips)

__, __, 16:  CHS  (nop)

__, __, 33:  R↓

42, _4, 25:  x<>I


This code works for all real values.   


For the ceiling function, use the identity:   ceil(x) = -floor(-x).  


   

MoHPC thread:  

https://www.hpmuseum.org/forum/thread-20766-post-182065.html#pid182065


Eddie


All original content copyright, © 2011-2023.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 


Monday, August 28, 2023

HP 15C Collector's Edition: Some Thoughts and Hidden Modes

HP 15C Collector's Edition:   Some Thoughts and Hidden Modes



On May 2, 2023, Moravia announced the return on the HP 15C programming scientific calculator.  An initial limited run  calculators were available that were delivered in July. Thankfully, another set of calculators will be available for order and delivery starting the end of September 2023.









Hopefully this will be true in future production runs, but in the initial run, the HP 15C came in a box, a Thank You card,  with a leather case and a printed manual.    I love the larger font and the clarity of the text of the Owner's Handbook.   The handbook is an extension of the original HP 15C Manual along with an introduction from Wlodek Mier-Jedrzejowicz and Gene Wright.  


You can download both the Manual and new edition of the Advanced Functions Handbook from the HP Calculator Literature website:


Manual:  https://literature.hpcalc.org/items/2258

Advanced Functions Handbook:  https://literature.hpcalc.org/items/2259


The compliment to Manual, the Advanced Functions Handbook goes into detail on several of the HP 15C's advanced features:  


Solving Equations:   The best ways for using the SOLVE command, and how the SOLVE feature finds roots of equations.  This section also includes a section of finding the derivative (approximate slope) of a function and a financial time-value-of-money program.


Integration:  The accuracy of the integral function and handling more difficult integral problems.  In general, the accuracy and the time of integration is tied to the fixed decimal settings.


Complex Numbers:  The internal workings of the complex mode (Flag 8), including solving equations and integrations.


Matrices:  LU Decomposition, constructing identity matrices, and least-squares calculations.


Programming:  No More Pause Bug


The PSE bug has been fixed!  We can use the pause command to heart's content and the display won't flash off.  


Back of the Calculator





The back of the HP 15C has a plate that has the following information:  statistics registers, some conversions, a table of error, test, and matrix codes, how the ISG (increment skip if greater than) and DSE (decrement skip if equal) commands work, and the stack effects on several two-result commands.


The Keyboard


The battery compartment, which contains the two CR2032 batteries needed to power the HP 15C is held by a small screw.  Thankfully, no special screwdriver is required, a small household or computer screwdriver should do the trick.


The keyboard, for me, is responsive.  The keys give a nice, quiet click when they are pressed.  I'm comfortable holding the calculator and letting my thumbs type on the keyboard efficiently.




Hidden Modes


Already, the HP 15C Collector's Edition has additional memory over the previous editions:


*  A maximum of 99 memory registers, 78 uncommitted registers at default setting

*  A maximum of 672 steps


We have some Easter Eggs on the HP 15C Collector's Edition.   There are two hidden modes on the HP 15C:


HP 15.2 Mode:  This mode ups the maximum of memory registers to 195, with 174 uncommitted registers at default setting.    Pressing [ g ] ( MEM ) at the beginning will show "19174 00-0", as there really isn't enough room to display the total amount of uncommitted registers.  I have my calculator in 15.2 mode and so far, this calculator works as well as the default HP 15 mode.  Switching back to 15 mode will preserve as much memory as allowed, excessive memory will be lost.  


HP 16 Mode:  This modes accesses a possible-beta version of the HP 16C calculator.   The HP 16C calculator was a popular computer programmer's calculator which emphasizes on bit manipulation, base conversions, and Boolean logic.   I worked a little bit on this mode, and there was a few problems when working in decimal integer mode.     More information on the HP 16C calculator here:  https://www.hpmuseum.org/hp16.htm


How do we switch the hidden modes on the Collector's Edition?


1.  With the calculator off: hold the [ g ], [ ENTER ], and [ ON ] keys.   This gets the calculator into test mode.

2.  Press [ 4 ].  Option 4 will not appear on the screen.

3.  Set your mode:

   * [ e^x ] for the original HP 15C Collector's Edition mode

   * [ 1/x ] for the expanded 15.2 mode  (not manufacturer supported)

   * [ 7 ] for the HP 16C mode (not manufacturer supported)


Caution:  The 15.2 and 16 modes are not manufactured supported.  Enter at your own risk.  For me, I have used the 15.2 mode and the calculator works fine.  The original mode still has plenty of memory.  


Discussion on the hidden modes starts about page 17 of this thread:

https://www.hpmuseum.org/forum/thread-19886-page-17.html



Final Thoughts


Welcome back, HP 15C!  Knock on wood the HP 15C once again becomes mainstream like it's long time financial cousin the HP 12C.

Need help with RPN (Reverse Polish Notation)?  Check out the RPN Programming tutorial series (which was done for the previous HP 15C Limited Edition) which starts here:  http://edspi31415.blogspot.com/2011/11/hp-15c-programming-tutorial-part-1.html

(Just keep in mind the pause bug that was present in the Limited Edition has been fixed in the Collector's Edition.)


Eddie 


All original content copyright, © 2011-2023.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 


Wednesday, May 3, 2023

Announcement: HP 15C Collector's Edition

 Announcement:  HP 15C Collector's Edition



The HP 15C Returns



Hewlett Packard and Moravia is bringing back the HP 15C Calculator with the HP 15C Collector's Edition, which is set to be delivered starting the summer of 2023.  


The HP 15C is a RPN (Reverse Polish Notation) programming scientific calculator, first released in in 1982 and has the following features:  


*  Matrices:  Store up to 5 matrices.  Operations include determinant, inverse, norm, and transpose.  

*  Complex Numbers:  The set of complex numbers includes powers, logarithms, and trigonometry.

*  Numerical integration

*  Solve:  Finding the roots of functions

*  Standard Scientific functions:  polar/rectangular conversions, trigonometry, powers, roots, logarithms, linear regression, fraction and integer parts, hyperbolic functions

*  Programming:  Keystroke with labels, comparison tests


The HP 15C Collector's Edition has the following improvements from the original and Limited Edition of the HP 15C:


*  There are now 99 memory registers, up from 67

*  There is now a memory capacity of 672 steps, up from 448

*  The new processor promises a faster speed 

*  The Collector's Edition comes with a printed manual, which can be downloaded from Calculator Store's website here:  https://www.thecalculatorstore.com/epages/eb9376.sf/en_US/?ObjectPath=/Shops/eb9376/Products/%22HP-15c%20%23INT%22


From browsing the PDF file of the manual, the manual looks nice and it's detailed. 


For details, credit, and discussion, click on Klass' original post is on the Museum of HP Calculators (MoHPC) here:  https://www.hpmuseum.org/forum/thread-19886.html



Pre-Orders


The HP 15C Collector's Edition is set to be delivered starting at the end of June 2023.   At this moment, Moravia Consulting, a licensee for HP Calculators, has two stores offering pre-sales:


Eduwinkel:  (Netherlands) (Price:  129,95 Euros as of 5/3/2023*)


https://www.eduwinkel.nl/hp-15c-collectors-edition-calculator.html


The Calculator Store:  (Spain) (Price: 129,99 Euros as of 5/3/2023*)


English:  

https://www.thecalculatorstore.com/epages/eb9376.sf/en_US/?ObjectPath=Categories


Spanish:  

https://www.thecalculatorstore.com/epages/eb9376.sf/es_ES/?ObjectPath=Categories


* Prices do not include delivery charges but does include value added tax (VAT).  Depending where the customer is from VAT may be subtracted from the price.  


Source:


Kuperus, Klaas.   "NEW: HP 15C Collectors Edition"  MoHPC (Museum of HP Calculators)   May 2, 2023.  https://www.hpmuseum.org/forum/thread-19886.html



I have pre-ordered a HP 15C Collector's Edition and can't wait to work with it.  



Disclaimer:  No compensation has been received for this post.  



All original content copyright, © 2011-2023.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 


Thursday, April 27, 2023

HP Prime: Firmware 14730

HP Prime:   Firmware 14730



Windows Update - Firmware 14730





There is a new update for the HP Prime, the Connectivity Kit, and the HP Virtual Calculator:  Firmware 14730.


Highlights of the firmware 14730:


*  Polynomial inequalities can be reliably solved in CAS mode.

*  The Chi-Square Goodness of Test automatically updates the degrees of freedom.

*  Intersection of functions in the Function App has an improved algorithm.

*  The equals character (=) is added to the soft keys in CAS mode.

*  Memory leaks and crashes are fixed.


For a detailed list, check the detailed list provided by Klaas Kuperus, Product Manager for HP for MORAVIA Consulting on the MoHPC (Museum of HP Calculators) page:


https://www.hpmuseum.org/forum/thread-19845.html


Download the new package here:


https://hpcalcs.com/download/


The file is the HP Connectivity Kit (32 or 64 bit) 2.1.14730 (2023 04 13) for Windows.  Update for Macintosh to come soon.  The file contains:


*  The updated Connectivity Kit.

*  The updated firmware, which will be downloaded through the kit once the calculator is plugged into the PC.

*  The updated virtual calculator, which will be upgraded once the file is run for the first time.


Credit to HP and MORAVIA Consulting.  


Eddie 


All original content copyright, © 2011-2023.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 


Friday, May 7, 2021

HP Prime Firmware Update (Beta) - Python Becomes Available

 HP Prime Firmware Update (Beta) - Python Becomes Available 


Special thanks to go the HP Calculator Team for the new updates for the HP Prime. 


What's New?


This is not an all-inclusive list. (All screen shots are from the 5/5/2021 firmware).


*  Polynomial Roots Wizard.  Path:  [ Toolbox ], ( CAS ), 6.  Polynomial, 7.  Polynomial roots wizard.   We can calculate either the roots of a polynomial or build a polynomial from their roots.  For the 5/5/21 update, the graph on the polynomial appears for any polynomial with real coefficients.


*  Probability Wizard:  Calculate and draw probability distributions for the Normal (z), Student (t), ChiSquare ( χ^2), Fisher (F), and Geometric.  Path:  [ Toolbox ], ( Math ), 5. Probability, 4. Prob Wizard


Both wizards can be accessed no matter what App is running. :) 

*  Intelligent Math:   When checked in the Home options, certain calculations return exact results.   I will probably have this turned on at all times.



*  Save and Load States:  You can save the contents of the Home screen, settings, inputs, results, home variables, user variables, and lists. 

*  Python Programming App. (Micropython) There are two main screens.  [ Symb ] brings up the editor and [ Num ] brings up the terminator.  In the current firmware, we can have more than one script, but pressing [ Num ] will import all the scripts automatically.   I anticipate heavy use of the def-return structures.  In the future I am going to include python scripts to be used with the HP Prime.

Modules Available (5/5/2021 firmware) (not an all inclusive list):
* array
* math
* cmath
* ustruct
* utimeq
* urandom
* cas  (HP Prime exclusive, I think) 
* hpprime (HP Prime exclusive)
* linalg
* matplotl
(and more)


Firmware Available

4/28/2021:

Connectivity Kit (Beta)
Emulator (Beta)
Calculator Firmware for both G1 and G2 (hardware) (Beta):


5/5/2021:

Calculator Firmware only:

Copy this into File Explorer (Windows)
ftp://ftp.hp.com/pub/calculators/Prime/

I'm not sure if the above method work for MacOS (at this time).  TI-Planet (see link below) also has a direct download.  

Documentation

A thread on the 4/28/2021 update (MoHPC):


 Here is a thread on the 5/5/2021 update (MoHPC):


Discussion on TI-Planet (French, can be translated into English):



Any further updates will be posted as they come.  

Eddie

All original content copyright, © 2011-2021.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 

Saturday, October 6, 2018

RPN 1250: One of a Kind (HHC 2018)

RPN 1250: One of a Kind  (HHC 2018)


RPN 1250 


Introduction

The RPN 1250 is a re-purposed Texas Instruments TI-1250 calculator by Beniot Maag.  Maag has previously re-purposed the Texas Instruments TI-1200 into the RPN 1200.  Nothing short of marvelous.

The RPN 1250 has been Maag's project since 2016.  He posted a thread on the MoHPC's website:  http://www.hpmuseum.org/forum/thread-4819.html

I won the RPN 1250 as one of the door prizes at HHC 2018.  You can read my summary here: http://edspi31415.blogspot.com/2018/10/hhc-2018-in-review.html

The RPN 1250 is powered by a V9 volt battery.

Features


The RPN 1250 has 24 keys.  Each key, except one, has a primary function with two shifted functions.  The shift key, labeled [ F/G ], is a dual shift key.  Press [ F/G ] once for the first shifted functions (in yellow), twice for the second shift functions (in blue), and three times recycle to the original function.

Update:  The RPN 1250 has 24 keys, not 40.  (10/13/2018)

The functions include:  trigonometry, logarithmic, exponential, integer part, fraction part, reciprocal, roots, and powers.  Four sets of conversions are included: in/mm, mi/km, lb/kg, and °C/°F.

The angle for the trigonometric functions are in radians.  There is a convert to radians function.

The display is 7 digits or 4 with 2 digit exponents, with the default mode is FIX 2 (2 decimal places).   However, the largest number the RPN 1250 can handle is 3.40 * 10^38.

The Escape Mode

The escape mode allowed the use to show what version of firmware, adjust the brightness of the LCD display and execute display tests.

Programming

The RPN 1250 has RPN keystroke programming.  There are 20 registers (0-9 and .0 (dot 0) through .9 (dot 9)).  Store and recall arithmetic are available.  Stack contents are accessible, along with an indirect addresses through the [ENTER] key.

There are 20 labels available (0 to 9 and .0 to .9).  On the surface, the memory is volatile.  However, the RPN 1250 has three permanent slots that we can store the program space into three slots.

There are twelve tests that called by the TST function:  x = 0, x ≠ 0, x > 0, x ≥ 0, x < 0, x ≤ 0, x = y, x ≠ y, x > y, x ≥ y, x < y, and x ≤ y.

Each step in the program is shown by the step and the command pressed.  Displaying the command proved to be a challenge for Maag, since he only had seven segment characters to work with.

The program space is 98 steps.  The programming works well and is a pleasure to use.  The thing I have to get used to is the having to press the shift key two times for the second shifted functions.

Let's take a look at few sample programs.

Each program has input and output rounded to 2 decimal places.

RPN 1250 Program:  Area of the Circle

1 LBL 0
2 x^2  
3 π
4 *
5 RTN

Examples:
Input: 5.00,  Output: 78.54
Input: 10.00, Output: 314.56
Input: 28.00, Output: 2463.01

RPN 1250 Program: Sign Function

1 LBL 1
2 ENTER
3 x^2
4 √
5 ÷
6 RTN

Examples:
Input:  -54.00, Output: -1.00
Input:  38.00, Output:  1.00
Input: 0.00, Output:  dt Error

RPN 1250 Program: Hypothesis

1 LBL 2
2 x^2
3 x<>y
4 x^2
5 +
6 √
7 RTN

Examples:
Input: 3.00, 4.00, Output: 5.00
Input: 5.00, 8.00, Output: 9.43
Input: 19.00, 11.00, Output: 21.95

RPN 1250 Program: Sine of a Angle in Hours-Minutes  (format HH.MM°)

1  LBL 3
2  ENTER
3  IP (INT)
4  x<>y
5  FP (FRC)
6  1
7  0
8  *
9  6
10 ÷
11 +
12 →RAD
13 SIN
14 RTN

Examples:
Input:  40°50', Output:  0.65
Input:  20°13', Output:  0.35

RPN 1250 Program:  Quadratic Equation  (x^2 + b*x + c = 0)

Store b in R1 and c in R2.  Run the program.  You get the discriminant.

Discriminant is negative:  next two results is the real and imaginary part of the complex conjugate roots

Discriminant is non-negative:  the next two results are the real roots

1 LBL 0
2 RCL 1
3 x^2
4 RCL 2
5 4
6 *
7 -
8 STO 3
9 R/S
10 TST 1  (x<0 font="">
11 GTO 8
12 RCL 1   (real roots)
13 CHS
14 RCL 3
15 √
16 +
17 2
18 ÷
19 R/S
20 RCL 1
21 CHS
22 RCL 3
23 √
24 -
25 2
26 ÷
27 RTN
28 LBL 8  (complex roots)
29 RCL 1
30 CHS
31 2
32 ÷
33 R/S
34 RCL 3
35 x^2
36 √
37 √
38 2
39 ÷
40 RTN

Examples:
Input:  R1 = 8, R2 = 3; Output: Discriminant: 52.00, Root 1: -0.39, Root 2: -7.61
Input:  R1 = 6, R2 = 11; Output: Discriminant: -8.00, Real: -3.00, Imag: 1.41  (-3.00 ± 1.41i)

Thank you Benoit Maag, this calculator is truly one of the kind!

Eddie

All original content copyright, © 2011-2018.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.  Please contact the author if you have questions.

Wednesday, July 25, 2018

HP Prime: Firmware Update (13865, date 2018.07.06)


HP Prime:  Firmware Update (13865, date 2018.07.06)




There is a new update to the HP Prime firmware.  The new version is 13865. 

You can find the file and details here:

Details and file: 




I haven’t had much chance to work with the new firmware, however according to the release information, some of the highlights are:

* There is a new red indicator when the HP Prime’s power reaches below 10%.

* All integrals in HOME mode will calculate numerical results.  Previously results are returned in either numerical or exact answers.  Exact answers will still be provided in CAS mode.

* You can control the amount of time until the HP Prime dims its screen.  The screen is dimmed when you do nothing on the calculator after a set amount of time.  The time is set in milliseconds as a base integer (30,000 in decimal or 7530_16 in hexadecimal).  The variable is TDim found in the Vars-Setting menu. 

* The command EVAL is said to now help INPUT with local variables.  I haven’t played around with this yet. 

* Updated CAS and improvements


As a note, there the HP Prime now gets a new processor G2.   To find out what hardware version you have, press [Help], press the soft key (Tree), scroll up, select About HP Prime.  I have hardware revision C.  The threads on the MoHPC site goes into more details.  The reason why I mention this is if you have trouble updating your HP Prime, the firmware files may need to be in a new folder.  The folder is:

Hardware C (and I’m assuming this will work for A):
(your drive) \HP Connectivity Kit\Firmware\PrimeG1

Thank you to HP and HP Museum of Calculators! 

Happy Computing,

Eddie

All original content copyright, © 2011-2018.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.  Please contact the author if you have questions.

Saturday, September 30, 2017

HP 12C: Prime Factoring (by Don Shepard)

HP 12C:  Prime Factoring (by Don Shepard)

Introduction – Cash Flow Registers to Simulate Indirect Addressing

This program uses what is called indirect addressing on the HP 12C, which can be simulated by the use of the cash flow registers. 

Cash flow registers can be registered by using the cash flow [ g ] [PMT] (CFj)  and frequency [ g ] [ FV ] (Nj) registers.  Every time a cash flow is stored, the counter is increased by 1.  The counter can be recalled by press [RCL] [ n ].

Similarly, you can recall the cash flows by the use of [RCL] [ g ] [PMT] (CFj) and the attached frequencies by the use of [RCL] [ g ] [ FV ] (Nj).  Each time a cash flow is recalled, the counter is decreased by 1. 

Each cash flow can have a frequency up to 99 copies. 

Fun fact:  the first 20 cash flows can be stored into registers R0 through R19, with the 20th flow stored in FV (future value).  The cash flow 0 is the initial cash flow, CF0 (accessed by [ g ] [ PV ] (CF0)). 

This is kind of storing values in a list and recalling them whenever necessary.

Program:

Enter the integer and press [ R/S ].  Keep pressing [ R/S ] to reveal more factors.  The factorization ends when a zero appears.

(Remember if you program using a HP 12C Platinum, step numbers are three digits instead of two.)

Step
Code
Key
01
44, 0
STO 0
02
42, 32
Clear Σ
03
2
2
04
44, 11
STO n
05
6
6
06
43, 14
[ g ] CFj
07
2
2
08
43, 15
[ g ] Nj
09
6
6
10
43, 14
[ g ] CFj
11
4
4
12
43, 15
[ g ] Nj
13
2
2
14
43, 14
[ g ] CFj
15
4
4
16
43, 15
[ g ] Nj
17
2
2
18
43, 14
[ g ] CFj
19
4
4
20
43, 15
[ g ] Nj
21
2
2
22
43, 14
[ g ] CFj
23
43, 15
[ g ] Nj
24
1
1
25
43, 14
[ g ] CFj
26
2
2
27
43, 15
[ g ] Nj
28
0
0
29
44, 12
STO i
30
45, 43, 15
RCL [ g ] Nj
31
43, 33, 56
GTO 56
32
1
1
33
44, 12
STO i
34
45, 43, 14
RCL [ g ] CFj
35
43, 33, 56
GTO 56
36
45, 11
RCL n
37
3
3
38
43, 34
x≤y
39
43, 33, 28
GTO 28
40
45, 0
RCL 0
41
43, 23
LN
42
43, 35
x=0
43
43, 33, 00
GTO 00
44
6
6
45
44, 11
STO n
46
45, 0
RCL 0
47
45, 1
RCL 1
48
36
ENTER
49
20
*
50
43, 34
x≤y
51
43, 33, 28
GTO 28
52
45, 0
RCL 0
53
31
R/S
54
0
0
55
43, 33, 00
GTO 00
56
44, 40, 1
STO+ 1
57
45, 0
RCL 0
58
45, 1
RCL 1
59
10
÷
60
43, 24
FRAC
61
43, 35
x=0
62
43, 33, 67
GTO 67
63
45, 12
RCL i
64
43, 35
x=0
65
43, 33, 32
GTO 32
66
43, 33, 36
GTO 36
67
45, 1
RCL 1
68
44, 10, 0
STO÷ 0
69
31
R/S
70
0
0
71
43, 33, 56
GTO 56


** Line 34 has been corrected.  10/3/2017


Example 1:

Factoring 148:

148 [R/S]
Display:  2, Press [R/S]
Display:  2, Press [R/S]
Display:  37, Press [R/S]
Display: 0

Result:  148 = 2 * 2 * 37 = 2^2 * 37

Example 2:

Factoring 976:

976
Display:  2, Press [R/S]
Display:  2, Press [R/S]
Display:  2, Press [R/S]
Display:  2, Press [R/S]
Display:  61, Press [R/S]
Display:  0, Press [R/S]

Result:  976 = 2 * 2 * 2 * 2 * 61 = 2^4 * 61


Special thanks to Don Shephard for letting me post his program on this blog.  Shepard attended HHC 2017, where he spoke about punch cards and their history.


Eddie


This blog is property of Edward Shore, 2017.

RPN: DM32 and DM42: Stopping Sight Distance (Metric)

RPN: DM32 and DM42: Stopping Sight Distance (Metric) The Stopping Sight Distance Formula – Derivation The stopping sight di...