Thursday, October 12, 2017

Adventures in Python: Plotting Sine and Cosine, The numpy Module

Adventures in Python:  Plotting Sine and Cosine, The numpy Module

This program will require that you have both numpy and matplotlib.  If you are working with Pythonista for the iOS, the two modules are included.  Other versions of Python require that you download matplotlib and numpy separately. 


Pointers:

1. The module numpy works with functions with lists as arguments.  There is a math function associated with numpy.  See the section on numpy functions below.

2.  It is helpful to set up all the graphing parameters before showing the graph with pylplot.show().

3. Color strings are six digit hexadecimal integers with the format ‘#RRGGBB’ (R = red, G = green, B = blue)

4.  To turn the plot grid on, use pyplot.legend().  To turn on the legend on use pyplot.legend().  Labels are defined in pyplot.plot


Program:

# this will require matplotlib
# download if needed

# radians mode is the default
import matplotlib
from matplotlib import pyplot

# will need numpy to generate lists
import numpy

# we will need math module for pi
import math

# generate lists
x = numpy.linspace(-2*math.pi, 2*math.pi, 50)
# sin and cos are included in numpy
y1 = numpy.sin(x)
y2 = numpy.cos(x)
y3 = numpy.sin(x)+numpy.cos(x)
# alt for y3: numpy.add(y1,y2)


# the plot begins
pyplot.plot(x,y1,color = '#228b22', label = 'sin x')
pyplot.plot(x,y2,color = '#ffa500', label = 'cos x')
pyplot.plot(x,y3,color = '#919811', label = 'sin x + cos x')


# turn grid on
pyplot.grid(True)
# labels
pyplot.title('Trig Plots 007')
pyplot.xlabel('x')
pyplot.ylabel('y')
# turn legend box on
pyplot.legend()
# show the plot
pyplot.show()

Output:




Some Numpy Functions

numpy.add(list 1, list 2)    Adds two lists, element by element.

numpy.subtract(list 1, list 2)   Subtracts list 2 from list 1, element by element.

numpy.mutiply(list 1, list 2)   Multiplies two lists, element by element.

numpy.divide(list 1, list 2)    Divides list 1 by list 2, element by element.

numpy.power(list 1, list 2)    Calculates list 1**list 2.

numpy.maximum(list 1, list 2)  Takes the maximum of each respective pair.

numpy.minimum(list 1, list 2)   Takes the minimum of each respective pair.

numpy.round(list, number of decimal places)  Round each element.

Other element by element operations: (one list arguments – Radians is the default angle measure)

numpy.square
numpy.sqrt
numpy.cbrt (cube root)
numpy.absolute
numpy.sin
numpy.cos
numpy.tan
numpy.radians (convert to radians)
numpy.asin
numpy.acos
numpy.atan
numpy.degrees (covert to degrees)
numpy.exp
numpy.log (ln)
numpy.real
numpy.imag
numpy.angle
numpy.log10 (log)
numpy.sinc
numpy.i0 (Bessel first kind, order 0)

Until next time,

Eddie


This blog is property of Edward Shore, 2017.

1 comment:


  1. Very Impressive Python tutorial. The content seems to be pretty exhaustive and excellent and will definitely help in learning Python course. I'm also a learner taken up Pyhton training and I think your content has cleared some concepts of mine. While browsing for Python tutorials on YouTube i found this fantastic video on Python. Do check it out if you are interested to know more.https://www.youtube.com/watch?v=e9p0_NB3WrM

    ReplyDelete

TI-84+ and Casio (fx-CG 50) Micropython: Simplifying Nested Radicals

TI-84+ and Casio (fx-CG 50) Micropython: Simplifying Nested Radicals Introduction  The following program will simplifying the following...