Friday, October 17, 2014

sin(atan x), sin(acos x), cos(asin x), cos(atan x), tan(asin x), tan(acos x)

Deriving trig functions where the angle is an inverse trig function. Example: sin(acos x).

Inverse Functions

sin(asin t) = t
cos(acos t) = t
tan(atan t) = t

Other such calculations can be derived from the three Pythagorean trig identities:

sin^2 x + cos^2 x = 1
sec^2 = 1 + tan^2 x
1 + cot^2 x = csc^2 x

sin^2 x + cos^2 x = 1

Also known as (sin x)^2 + (cos x)^2 = 1

Let x = asin t where -1 ≤ t ≤ 1
(sin(asin t))^2 + (cos(asin t))^2 = 1
t^2 + (cos(asin t))^2 = 1
(cos(asin t))^2 = 1 - t^2
cos(asin t) = √(1 - t^2)

Let x = acos t, -1 ≤ t ≤ 1
(sin(acos t))^2 + (cos(acos t))^2 = 1
(sin(acos t))^2 = 1 - (cos(acos t))^2
(sin(acos t))^2 = 1 - t^2
sin(acos t) = √(1 - t^2)

sec^2 x = 1 + tan^2 x

sec^2 x = 1 + tan^2 x
1/cos^2 x = 1 + tan^2 x

Let x = atan t, -1 ≤ t ≤ 1

1/(cos(atan t))^2 = 1 + (tan(atan t))^2
1/((cos(atan t))^2 = 1 + t^2
(cos(atan t))^2 = 1/(1 + t^2)
cos(atan t) = √(1/(1 + t^2))

Let x = acos t, -1 ≤ t ≤ 1

1/(cos(acos t))^2 = 1 + (tan(acos t))^2
1/t^2 = 1 + (tan(acos t))^2
(tan(acos t))^2 = 1/t^2 - 1
(tan(acos t))^2 = (1 - t^2)/t^2
(tan(acos t)) = √(1 - t^2)/t

1 + cot^2 x = csc^2 x

1 + cot^2 x = csc^2 x
1 + 1/tan^2 x = 1/sin^2 x

Let x = asin t, -1 ≤ t ≤ 1

1 + 1/(tan(asin t))^2 = 1/(sin(asin t))^2
1/(tan(asin t))^2 = 1/t^2 - 1
1/(tan(asin t))^2 = (1 - t^2)/t^2
(tan(asin t))^2 = t^2/(1 - t^2)
tan(asin t) = t/√(1 - t^2)

Let x = atan t, -1 ≤ t ≤ 1

1 + 1/(tan(atan t))^2 = 1/(sin(atan t))^2
1 + 1/t^2 = 1/(sin(atan t))^2
(t^2 + 1)/t^2 = 1/(sin(atan t))^2
(sin(atan t))^2 = t^2/(t^2 + 1)
sin(atan t) = t/√(t^2 +1)

Summary:



cos(asin t) = √(1 - t^2)
sin(acos t) = √(1 - t^2)
cos(atan t) = √(1/(1 + t^2))
tan(acos t) = √(1 - t^2)/t
tan(asin t) = t/√(1 - t^2)
sin(atan t) = t/√(t^2 +1)


This blog is property of Edward Shore. 2014

HHC 2025 Videos

  HHC 2025 Videos The talks from the HHC 2025 conference in Orlando, Florida are starting to be up on hpcalc’s YouTube page within th...