Monday, February 17, 2020

Retro Review: TI-30 (1976)

Retro Review:  TI-30 (1976) 

One more quick blog posts before I head off into surgery this week.






Quick Facts

Model:  TI-30
Company:  Texas Instruments
Type:  Scientific
Years:  1976-1982
Display:  8 digits, 5 digits with 2 digit 10^xx in scientific notation, red LED lights
Batteries:  Battery, 9 V
Original Retail Price:  $24.95
Logic:  AOS (Algebraic)

History

The TI-30 is one of the first scientific calculators to cost less than $50.00 retail, making one of the first scientific calculators to be sold to a wide audience.

The TI-30 model name is carried to present day, with the latest incarnation being the TI-30xa with a gray keyboard and wide digit display.

TI-30 from 1976 (left), TI-30Xa from 2015 (right)
Features

The first TI-30 is a simple, basic scientific calculator.  It's features include:

*  Trigonometric functions and inverse
*  Logarithmic functions and inverse
*  Powers and Roots
*  Parenthesis
*  One memory register with sum and exchange commands
*  Arithmetic, percent, reciprocal

There is a DRG key where it cycles through Degrees mode, Radians mode (indicator of I), and Gradians mode (indicator of II).

Buyers had an option of purchasing one of three carrying pouches to carry the TI-30.  The one I purchased on eBay had a denim carrying pouch and it's really nice!

The display had a few indicators which was pretty advance for its time:

When a calculation is in progress, the right-most digit displays a "twirling eight".

If an error occurs, the word "Error." is spelled out.

If the calculator is left on for a few seconds, it goes into a screen saver mode.  The screen saver has a decimal point scrolling across the screen left to right.  This is designed to save battery usage.

The TI-30 also had a power adapter, I would imagine that those would be hard to find today. 

Keyboard

I am very pleased with the keyboard:  the keys are well maintained.  The keys are easy to press.  The LED screen is clear and easy to read.  The keys are responsive, don't just try to be a speed typist and everything will be fine.  The calculator is nice and lightweight.

The only thing I had a hard time with was trying to attach the 9-V battery and closing the case.

Verdict

I'd say yes; if you are a calculator collector, it is worth collecting, even if it is only historic value.  It also doesn't cost too much, I paid $17 for mine. 

Routine Goodies

Absolute Value:  | n |
n  [ x^2 ] [ √x ]

Sign:  sgn(n) = -1 for negative, 1 for positive (does not work for n = 0)
n [ STO ] [ * ] [ x^2 ] [ √x ] [ ÷ ] [ RCL ] [ = ]

Modulus:  n mod m  with n > m, n > 0, m > 0.
n [ ÷ ] m [ STO ] [ = ] [ - ] (integer part of the result) [ = ] [ * ] [ RCL ] [ = ]

Convert to Scientific Notation:
[ * ] 1 [ EE ] [ = ]

Convert to Floating Numbers:
[ * ] 1 [ INV ] [ EE ] [ = ]

The next blog post will be on March 7, 2020.  Take care!

Eddie

All original content copyright, © 2011-2020.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.

Sunday, February 16, 2020

Casio fx-3650P: Circular Segment

Casio fx-3650P: Circular Segment

Introduction





Variables:
X:  radius
Y:  angle (in degree)
C:  chord length
D:  altitude
A:  area
B:  arc length

Program 1:  Given Chord Length and Altitude

Calculate:  Radius, Angle, Area, Arc Length

? → C : ? → D : Deg :
( ( C ÷ 2 )^2 + D^2 ) ÷ ( 2D ) → X ◢
2 cos^-1 ( ( X - D ) ÷ X ) → Y ◢
X^2 ÷ 2 * ( π Y ÷ 180 - sin Y ) → A ◢
X Y π ÷ 180 → B

Example:
Input C = 8,  D = 11.75

X:  6.555851064 (radius)
Y:  284.8004594 (angle)
A:  127.5950317 (area)
B:  32.58720643 (arc length)

Program 2:  Given Radius and Angle

Calculate:  Chord Length, Altitude, Area, Arc Length

? → X : ? → Y : Deg :
2 * sin(Y ÷ 2) → C ◢
2 X ( sin(Y ÷ 4))^2 → D ◢
X^2 ÷ 2 * ( π Y ÷ 180 - sin Y ) → A ◢
X Y π ÷ 180 → B

Example:
Input X = 17.25, Y = 204

C:  33.74609223 (chord length)
D:  20.83647667 (altitude)
A:  590.2462124 (area)
B:  61.41813638 (arc length)

Source:

John W Harris and Horst Stocker.  Handbook of Mathematics and Computational Science Spring:  New York.  2006 ISBN 978-0-387-94746-4

Announcement

I am going to have surgery this week and my family is having medical issues.  I will be taking some time off in the next few weeks.  Tomorrow I have a special post reviewing the classic TI-30 from 1976. Take care everyone and thank you so much for your support.  I love doing this blog. 

Eddie

All original content copyright, © 2011-2020.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.

Saturday, February 15, 2020

HP Prime and TI 84 Plus CE: Jacobi Elliptic Functions

HP Prime and TI 84 Plus CE:  Jacobi Elliptic Functions

Introduction

Jacobian Elliptic Functions are a set of twelve functions denoted by XY(U, K) where X and Y stands of letters c, s, n, and d.  Today's blog post will focus on three of the common Jacobi Elliptic Functions:

Sine Amplitude:  sn(u,k)
Cosine Amplitude:  cn(u,k)
Delta Amplitude:  dn(u,k)

Where u is a real number and k is a parameter between -1 and 1 inclusive

To determine any of the Jacobian Elliptic Functions, the integral has to be solved for X:

U = ∫( 1/√(1 - K^2 * sin^2(T)) dT from T = 0 to T = X)

Solving for X will represent the function am(U,K).

Then:
sn(U,K) = sin(X)
cn(U,K) = cos(X)
dn(U,K) = √(1 - K^2 * sin^2(X))

Radian angles are used. 

HP Prime App:  Jacobi Elliptic Functions

Download here:  https://drive.google.com/open?id=1qQ253ri88IyZIwYvKd5kEAIe2Bkgfyl_



In a different approach, I have created a custom app, which is based on the Solver App named Jacobi Elliptic Functions, which you can download on the link above.

Symb View:  The four equations that are used for this app.  Leave all four checked.

Num View:  This is where you enter U and K.  Leave these boxes unchecked.  Press or touch (Solve) to get the other values am (X), sn (S), cn (C), and dn (D). 

If you want to program ths app yourself, please see the screen shots above. 

TI-84 Plus CE Program:  ELLIPFX

Download here:  https://drive.google.com/open?id=16DTb2m2o2kwo1sJ6s_NGGJ_M9bgxsOvZ

"EWS 2020-01-22"
Radian
.5→X:1→F:1→N
ClrHome
Disp "JACOBIAN ELLIPTIC","­1≤K and K≤1"
Prompt U,K
Repeat abs(N/F)≤1E­10
fnInt((1-K^2*sin(T)^2)^(­-1/2),T,0,X)-U→N
(1-K^2*sin(X)^2)^(­-1/2)→F
X-N/F→X
End
sin(X)→S
cos(X)→C
√(1-K^2*sin(X)^2)→D
ClrHome
Disp "U="+toString(U)
Disp "K="+toString(K)
Disp "AM="+toString(X)
Disp "SN="+toString(S)
Disp "CN="+toString(C)
Disp "DN="+toString(D)

Examples

Example 1:
U = 3
K = 0.5

Results:
AM(U,K) = 2.772166899
SN(U,K) = 0.3610799872
CN(U,K) = -0.932534848
DN(U,K) = 0.9835676442

Example 2:
U = 1.5
K = 0

Results:
AM(U,K) = 1.5
SN(U,K) = 0.9974949866
CN(U,K) = 0.0707372017
DN(U,K) = 1

Sources

"Jacobi elliptic functions"  Wikipeida.  https://en.wikipedia.org/wiki/Jacobi_elliptic_functions  Retrieved December 23, 2019

"Jacobi elliptic function sn,cn,dn (chart) Calculator"  Ke!san Online Calculator https://keisan.casio.com/exec/system/1180573437  Retrieved January 22, 2020


Eddie

All original content copyright, © 2011-2020.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.

Sunday, February 9, 2020

HP 11C: Construction: Calculating the Number of Tiles

HP 11C:  Construction:  Calculating the Number of Tiles

Introduction



The 11C program presented will calculate the number of tiles needed for a rectangular room given:

*  room length and width, in feet
*  tile length and width, in feet
*  grout applied, if any, in inches
*  waste allowance %



For example, for a room of dimensions 12 feet 6 inches by 16 feet 8 inches, enter the room dimensions as 12.5 (12 + 6/12) and 16.66666667 (16 + 8/12), respectively.

Instructions:

Outside of User Mode:
Enter room length [ENTER] room width [ f ] [ A ]
Enter tile length [ENTER] tile width [ f ] [ B ]
Enter grout width [ f ] [ C ]
Enter waste allowance [ f ] [ D ]
Calculate the number of tiles, [ f ] [ E ]

In User Mode:
Enter room length [ENTER] room width [ √ ] (A)
Enter tile length [ENTER] tile width [ e^x ] (B)
Enter grout width [ 10^x ] (C)
Enter waste allowance [ y^x ] (D)
Calculate the number of tiles, [ 1/x ] (E)

Variables:
R1 = tile length (ft)
R2 = tile width (ft)
R3 = grout (in)
R4 = room length (ft)
R5 = room width (ft)
R6 = waste %

Number of tiles =

ceiling( (room length * room width) / ((tile length + grout) * (tile width + grout)) * (1 + waste%)

ceiling:  next highest integer

HP 11C Program: Number of Tiles

Step:  Key Code:  Key

001:  42,21,11:  LBL A
002:  44,5:  STO 5
003:  34:   X<>Y
004:  44, 4:  STO 4
005:  43, 32:  RTN

006:  42, 21, 12:  LBL B
007:  44, 1:  STO 1
008:  34:  X<>Y
009:  44, 2:  STO 2
010:  43, 32:  RTN

011:  42, 21, 13:  LBL C
012:  1:  1
013:  2:  2
014:  10:  ÷
015:  44, 3:  STO 3
016:  43, 32:  RTN

017:  42, 21, 14:  LBL D
018:  44, 6:  STO 6
019:  43, 32:  RTN

020:  42, 21, 15:  LBL E
021:  45, 5:  RCL 5
022:  45, 4:  RCL 4
023:  20:  *
024:  45, 1:  RCL 1
025:  45, 3:  RCL 3
026:  40:  +
027:  45, 2:  RCL 2
028:  45, 3:  RCL 3
029:  40:  +
030:  20:  *
031:  10:  ÷
032:  45, 6:  RCL 6
033:  43, 14:  %
034:  40:  +
035:  36:  ENTER
036:  42, 44:  X=0
037:  43, 40:  FRAC
038:  22, 0:  GTO 0
039:  33:  R↓
040: 1:  1
041: 40: +
042: 22,1:  GTO 1 
043: 42,21,0:  LBL 0
044: 33: R↓
045: 42,21,1:  LBL 1
046: 43, 44: INT
047: 43, 32: RTN

Example

Room Dimensions:  14 feet by 13.5 feet
Tile Dimensions:  1 foot by 1 foot
Grout: 1/8 inch (0.125 inch)
Waste Percentage:  5

Result:  Number of Tiles:  195

Eddie

All original content copyright, © 2011-2020.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.

Saturday, February 8, 2020

HP 42S and HP Prime: Rabbits vs Foxes

HP 42S and HP Prime: Rabbits vs Foxes

Introduction

The program presented today is based on the Rabbits vs. Foxes program for the HP 25 (see source below).  The program determines the population of rabbits and foxes over time as modeled by the differential equations:

Change in Rabbits:
dr/dt = 2 * r - α * r * f

Change of Foxes:
df/dt = -f + α * r  * f

where:
r = population of rabbits
f = population of foxes
α = probability of a rabbit encounters a fox
h = step 

This is approximated by Euler's method.

The HP Prime program RABBIT25 displays a print screen of results of the desired amount of iterations.  The HP 42S program RAB25 displays the results one step at time in the format rrrrr.fffff  (rabbits.foxes), like the original HP 25 program.


HP Prime Program RABBIT25

EXPORT RABBIT25()
BEGIN
// 2020-01-20 EWS
// Based on the Rabbits vs
// Foxes HP 25 program
LOCAL α,h,r,f,k,n,a;

// initialize and input
INPUT({α,h,r,f,n},
"Rabbits vs Foxes",
{"α: ","h: ","r0:","f0:","n: "},
{"α","h","inital # rabbits",
"initial # foxes",
"# iterations"});
L0:={r}; L1:={f};


// compute data
MSGBOX("L0 = rabbit population,
L1 = fox population;
(0,1,2,...,n), size n+1");
HFormat:=0;
PRINT();
PRINT("Rabbits vs Foxes");
FOR k FROM 0 TO n DO
IF k≠0 THEN
a:=α*r*f;
r:=r+h*(2*r-a);
f:=f+h*(−f+a);
END;
PRINT(k+" R: "+IP(r)+" F: "+
IP(f));
END;


// end of program
END;


HP 42S/Free42/DM42 Program RAB25

00 { 58-Byte Prgm }
01▸LBL "RAB25"
02 STO 02
03 R↓
04 STO 03
05 FIX 05
06▸LBL 05
07 RCL 02
08 ENTER
09 ENTER
10 RCL 03
11 RCL 00
12 ×
13 ×
14 STO 04
15 X<>Y
16 -
17 RCL 01
18 ×
19 +
20 X<0 font="">
21 0
22 STO 02
23 RCL 03
24 2
25 ×
26 RCL 04
27 -
28 RCL 01
29 ×
30 RCL 03
31 +
32 X<0 font="">
33 0
34 STO 03
35 IP
36 RCL 02
37 IP
38 1ᴇ5
39 ÷
40 +
41 STOP
42 GTO 05
43 .END.

Note:  You can replace STOP with PSE, as many as you like, if you don't want to press R/S after each step. 

Instructions:
Store α in R00, store h in R01, enter initial rabbit population

Example

Initial Populations:
Rabbits:  r = 300
Fixes:  f = 150
α = 0.01
h = 0.02

Iter:   Rabbits.Foxes  (rrrrr.ffff)
0:  300.00150
1:  303.00156
2:  305.00162
3:  307.00169
4:  309.00176
5:  311.00183
6:  312.00191
7:  312.00199
8:  312.00207
9:  312.00216
10: 311.00225
11: 309.00235
12: 307.00245
13: 304.00255
14: 301.00265
15: 297.00276


Source:

Randall B. Neff and Lynn Tilman "An Example of HP-25 Programming" Hewlett-Packard Journal: November 1975.  pg. 6
Eddie


All original content copyright, © 2011-2020.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.

Sunday, February 2, 2020

Fun With the TI-59

Fun With the TI-59



The following programs can be used on the TI-58C, TI-58, TI-59, TI-66, and any applicable emulator such as the RCL 58, RCL 59, and TI-5x. 

Vieta's Formula

Given the roots α, β, and γ we can calculate the coefficients of the general cubic equation a*x^3 + b*x^2 + c*x + d = 0 by:

s1 =  α + β + γ
s2 = α * β + β * γ + α * γ
p = α * β * γ

And the coefficients are:

a = 1
b = -s1
c = s2
d = -s3

The program displays a, b, c, and d.

TI-59 Program Vieta's Formula

000 76 LBL
001 11 A
002 42 STO
003 01 01
004 91 R/S
005 76 LBL
006 12 B
007 42 STO
008 02 02
009 91 R/S
010 76 LBL
011 13 C
012 42 STO
013 03 03
014 91 R/S
015 76 LBL
016 15 E
017 01 1
018 42 STO
019 04 04
020 91 R/S
021 43 RCL
022 01 01
023 85 +
024 43 RCL
025 02 02
026 85 +
027 43 RCL
028 03 03
029 95 =
030 94 +/-
031 42 STO
032 05 05
033 91 R/S
034 43 RCL
035 01 01
036 65 *
037 53 (
038 43 RCL
039 02 02
040 85 +
041 43 RCL
042 03 03
043 54 )
044 85 +
045 43 RCL
046 02 02
047 65 *
048 43 RCL
049 03 03
050 95 =
051 42 STO
052 06 06
053 91 R/S
054 43 RCL
055 01 01
056 65 *
057 43 RCL
058 02 02
059 65 *
060 43 RCL
061 03 03
062 95 =
063 94 +/-
064 42 STO
065 07 07
066 91 R/S

Example

Input:  α = 3, β = -5, γ = 6
Results: a = 1, b= -4, c = -27, d = 90

Random Numbers

Generate random numbers between 0 and 1 with this psuedorandom number generator.  You will need to enter a seed to start out.

Instructions:  enter a seed, [ RST ], [ R/S ].  Keep pressing [ R/S ] to generate additional random numbers.

TI-59 Program:  Psuedorandom Number Generator

000 85 +
001 89 PI
002 95 =
003 45 Y^X
004 05 5
005 95 =
006 22 INV
007 59 INT
008 91 R/S
009 81 RST

Source:  HP 25 Application Programs.  Hewlett Packard, 1975

Distance to the Horizon

This program computes the distance to an object, in nautical miles, given both the height of object (in feet) and height of the observer's eyes (in feet).

Formula:   

distance = 1.144 * ( √HE + √H )

Instructions.   Enter HE, [ RST ], [ R/S ], enter H, [ R/S ]

TI-59 Program: Distance to the Horizon

000 34 SQRT
001 85 +
002 91 R/S
003 34 SQRT
004 95 =
005 65 *
006 01 1
007 93 .
008 01 1
009 04 4
010 04 4
011 95 =
012 91 R/S
013 81 RST

Example

Input:  HE = 9.5 ft, H = 222 ft
Results:  20.57126091 n.m.

Source: 
"Distance To Or Beyond Horizon" (HAV 1-06A)  HP 65 Navigation Pac -1.  Hewlett Packard.  1974

Atmospheric Refraction

This program calculates atmospheric refraction of the light passing through the Earth's atmosphere given the apparent altitude of the light source, such as a star.

R = 1/(tan (h0 + 7.31/(h0 + 4.4)) 

The angle is in degrees.   Enter the apparent altitude, h0, in degrees, minutes, seconds format (DD.MMSSSS).  The result, R, is in arcminutes. 

000 60 DEG
001 88 DMS
002 42 STO
003 00 00
004 85 +
005 07 7
006 93 .
007 03 3
008 01 1
009 55 /
010 53 (
011 43 RCL
012 00 00
013 85 +
014 04 4
015 93 .
016 04 4
017 95 =
018 30 TAN
019 35 1/X
020 42 STO
021 01 01
022 91 R/S
023 81 RST

Example:

Input:  h0 = 43'24".  Enter as .4324
Result:  R = 26.63496931'

Source:
Meeus, Jean.  Astronomical Algorithms.  Willams-Bell Inc:  Richard, VA 1991 ISBN 0-943396-35-2

Head Winds and Cross Winds

The program calculates head winds and cross winds given :

* wind velocity (K)
* the direction wind from due north, clockwise, in degrees (D)
* the plane's heading direction angle from due north, clockwise, in degrees (D)
* any adjustment for the compass (V)

Head Wind: HW = K * cos(D - HDG - V)
Cross Wind:  RCW = K * sin(D - HDG - V)

Instructions:
Enter K, [ R/S ], enter D, [ R/S ], enter HDG, [ R/S ], enter V, [ R/S ]

Cross wind is displayed.  Press [ x<>t ] to get head wind.

Note:  As a program step, CP clears the t register. 

TI 59 Program:  Cross Winds and Head Winds

000 60 DEG
001 29 CP
002 32 X<->T
003 91 R/S
004 75 -
005 91 R/S
006 75 -
007 91 R/S
008 95 =
009 37 P->R
010 91 R/S
011 81 RST

Example

Input:
K = 25 mph
D  = 240 mph
HDG = 280 mph
V = 0

Results:
Cross Wind:  -16.09699024 mph [ x<>t ]
Head Wind:  19.1511108 mph

Source:
"Head Winds and Cross Winds"   HP 65 Aviation Pac 1.  Hewlett Packard, 1974

Eddie


All original content copyright, © 2011-2020.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.

Saturday, February 1, 2020

Review: Calculated Industries Tradesman Calc

Review: Calculated Industries Tradesman Calc




Quick Facts:

Model:  Tradesman Calc, Model Number 4400
Company:  Calculated Industries
Type:  Scientific, Construction
Years:  Introduced 2012
Display:  8 digits
Batteries:  Battery, 1 CR2016
Retail Price:  $44.99, you can pay lower on internet searches.  I paid $29.95 from WalMart.
Memory Registers: 10, Registers 1 through 9, M 

Features

*  Units and unit conversions
*  Right Triangle Calculations
*  Ratio Calculations
*  Trigonometry
*  Geometry Calculations

Other mathematical functions:  reciprocal, powers, roots, degrees/degrees-minutes-seconds, parenthesis

The calculator operates in one of two modes:  Order and Chain

Order uses order of operations while chain completes calculations as keys are pressed (like a four-function calculator).  Order of operations is the default setting. 

Fraction settings allow you to set the largest denominator, up to 64. 

Unit and Unit Conversions

In keeping with the other construction calculators, the Tradesman Calc offers units and unit conversions.  Notice that the shift key is labeled Conv for this purpose.  You can easily add, subtract, multiply, and divide measurements.  For example to add 4 feet 5 inches with 6 feet 7 1/2 inches, press:

4 [ Feet ] 5 [ Inch ]   (Display:  4 - 5   FEET INCH)
[ + ] 6 [ Feet ] 7 [ Inch ] 1 [ / ] 2
[ = ]

Display:  11 - 0 1/2  FEET INCH  (11 feet, 1/2 inch)

You can convert the answer to decimal feet like this:

[ Conv ] [ Feet ]

Display:  11.041667  FEET

To convert to Inches: 

[ Conv ] [ Inch ]

Display:  132.5  INCH

To meters:

[ Conv ] [ m ]

Display:  3.3655 M

Units also include temperature (°F, °C), weight and mass (lbs, dry oz, tns, kg, grams, metric tons, wt/vol), and length (yds, feet, inch, m, cm, mm Bd Ft). 

Right Triangle Calculations 

The [ Adj ] (adjacent side), [ Opp ] (opposite side), [ Hyp ] (hypotenuse), and [Angle] (angle and adjacent angle) keys are used to solve right triangle problems.  Any two of the variables can be known to solve for everything else.  For example:

Known:  Adjacent (run):  15 feet,  Opposite (rise):  13 feet 8 inches

[Conv] [ × ] (Clear All)  (as recommended by Calculated Industries)
15 [ Feet ] [ Adj ]
13 [ Feet ] 8 [ Inch ] [ Opp ]

[Hyp] 20.292308 feet
[Angle] 42.336999°
[Angle] 47.663001° (adjacent angle)

Ratio Calculations

Use the X, Y, and X:Y commands to store and calculate ratios.  Example:

For the ratio 5/8 find X when X/18.

5 [Conv] [ Adj ] (X)   (stores 5 in X)
8 [Conv] [ Opp ] (Y)   (stores 8 in Y)
[Conv] [ Hyp ] (X:Y)   Result:  1 = 1.6

18 [Conv] [ Opp ] (Y)  (stores 18 in Y)
[Conv] [ Adj ] (X)    Result:  X = 11.25

Trigonometry

The Tradesman Calc has the trigonometric functions sine, cosine, and tangent, with inverse.  All angles are measured in degrees.

Geometry

Geometric calculations includes circles, arcs, and regular polygons (including inside and outside diameter). 

Keyboard

The keyboard is a pleasure to use.  Aside it being blue (blue is my favorite color), the keys have a pleasant touch and register perfectly.  The display is clear with prompts.  The Tradesman Calc comes with a hard case cover.  On the back of the calculator, there is a slot for a battery and another for user guide. 

Verdict

For a trade industries, I recommend this calculator.  The calculator has a convenient solvers for common geometry shapes along with unit mathematics. If you are going to purchase the Tradesman Calc, I recommend so shopping for less than retail price. 

Eddie

All original content copyright, © 2011-2020.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.

TI-59: Geometric Areas

TI-59: Geometric Areas



Introduction

The program calculates areas of planar geometric shapes.  The following user keys are defined:

A:  Enter A or radius.

B:  Enter B

C:  Enter C

D:  Display the total area

E:  Clear the total area

A':  Calculate the area of an Ellipse:  π*A*B.  For a circle, A = B

B':  Calculate the area of a Rectangle:  A*B.  For a square, A = B

C':  Calculate the area of a Triangle using Heron's Formula. 
S = (A + B + C)/2; √(S * (S - A) * (S - B) * (S - C))

D':  Calculate the area of Sector of a Circle:  π*B°*A^2/360
A:  radius, B: angle in degrees

E':  Calculate the area of a Regular Polygon:  (B * A^2)/(4 * tan(180°/B))
A:  length of a side, B:  number of sides (degrees)

Each calculation will add to the total area.

Memory Registers:

R01:  A
R02:  B
R03:  C
R04:  total area
R05:  S = (A + B + C)/2

The program is for the TI-58C, TI-58, TI-59, their emulators, and TI-66.

TI-59 Program:  Geometry Areas

000 76 LBL
001 11 A
002 42 STO
003 01 01
004 91 R/S
005 76 LBL
006 12 B
007 42 STO
008 02 02
009 91 R/S
010 76 LBL
011 13 C
012 42 STO
013 03 03
014 91 R/S
015 76 LBL
016 14 D
017 43 RCL
018 04 04
019 91 R/S
020 76 LBL
021 15 E
022 25 CLR
023 42 STO
024 04 04
025 91 R/S
026 76 LBL
027 16 A'
028 89 PI
029 65 *
030 43 RCL
031 01 01
032 65 *
033 43 RCL
034 02 02
035 95 =
036 44 SUM
037 04 04
038 91 R/S
039 76 LBL
040 17 B'
041 43 RCL
042 01 01
043 65 *
044 43 RCL
045 02 02
046 95 =
047 44 SUM
048 04 04
049 91 R/S
050 76 LBL
051 18 C'
052 53 (
053 43 RCL
054 01 01
055 85 +
056 43 RCL
057 02 02
058 85 +
059 43 RCL
060 03 03
061 54 )
062 55 /
063 02 2
064 95 =
065 42 STO
066 05 05
067 65 *
068 53 (
069 43 RCL
070 05 05
071 75 -
072 43 RCL
073 01 01
074 54 )
075 65 *
076 53 (
077 43 RCL
078 05 05
079 75 -
080 43 RCL
081 02 02
082 54 )
083 65 *
084 53 (
085 43 RCL
086 05 05
087 75 -
088 43 RCL
089 03 03
090 54 )
091 95 =
092 34 SQRT
093 44 SUM
094 04 04
095 91 R/S
096 76 LBL
097 19 D'
098 60 DEG
099 89 PI
100 65 *
101 43 RCL
102 02 02
103 65 *
104 43 RCL
105 01 01
106 33 X²
107 55 /
108 03 3
109 06 6
110 00 0
111 95 =
112 44 SUM
113 04 04
114 91 R/S
115 76 LBL
116 10 E'
117 53 (
118 01 1
119 08 8
120 00 0
121 55 /
122 43 RCL
123 02 02
124 54 )
125 60 DEG
126 30 TAN
127 65 *
128 04 4
129 95 =
130 35 1/X
131 65 *
132 43 RCL
133 02 02
134 65 *
135 43 RCL
136 01 01
137 33 X²
138 95 =
139 44 SUM
140 04 04
141 91 R/S

Example

5 [ A ]  6 [  B ]

[2nd] [ A' ]   Result:  94.24777961  (area of an ellipse with A = 5, B = 6)

[2nd] [ B' ]  Result:  30  (area of a rectangle with A = 5, B = 6)

9 [ C ]

[2nd] [ C' ]  Result: 14.14213562  (area of a triangle with A = 5, B = 6, C = 9)

9 [ A ] 60 [ B ]

[2nd] [ D' ]  Result: 42.41150082 (area of a circular sector A = 9, B = 60°)

9 [ A ] 8 [ B ]

[2nd] [ E' ]  Result:  391.1025971 (area of a polygon with a side length of 9 and 8 sides)

[ D ]  Total Area:  571.9040132

[ E ] clears total area

Eddie

All original content copyright, © 2011-2020.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.

Numworks: Allowing Repeated Calculations in Python

Numworks: Allowing Repeated Calculations in Python Introduction Say we want the user to repeat a calculation or a routine for as lo...