## Sunday, August 14, 2022

### TI 84 Plus CE TI-Basic and TI Nspire CX II Python: Gamma by Multiplication Recursion Property

TI 84 Plus CE TI-Basic and TI Nspire CX II Python:   Gamma by Multiplication Recursion Property

Introduction

The program calculates the gamma function for any real positive number in tenths by the multiplication recursion:

Γ(x + 1) = x * Γ(x)

For example:

Γ(2.5)

= 1.5 * Γ(1.5)

= 1.5 * 0.5 * Γ(0.5)

≈ 1.5 * 0.5 * 1.772453851

≈ 1.329340388

Reduce x by 1 until 1 is in between 0.1 and 1.

Gamma Values:

Γ(0.1) = 9.513507699

Γ(0.2) = 4.590843712

Γ(0.3) = 2.991568988

Γ(0.4) = 2.218159544

Γ(0.5) = 1.772453851

Γ(0.6) = 1.489192249

Γ(0.7) = 1.298055333

Γ(0.8) = 1.164229714

Γ(0.9) = 1.068628702

Γ(1) = 1

TI-84 Plus CE Program: GAMMATEN

TI-Basic

Notes:

*  To get the small L to create lists with custom names, get the character with the key strokes:  [ 2nd ] ( list ), OPS, B.  L.   In this listing, I will write L^ to symbolize the lower case L.

* L^TEN is a custom list.

Program listing:

{9.513507699, 4.590843712, 2.991568988,

2.218159544, 1.772453851, 1.489192249,

1.298055333, 1.164229714, 1.068628702

1}→L^TEN

ClrHome

Disp "GAMMA X (NEAREST 0.1)"

Input "X≥0.1, X?",X

round(X,1)→X

fPart(X)*10→F

If F=0:10→F

1→G

While X>1

G*(X-1)→G

X-1→X

End

G*L^TEN(F)→G

Disp "EST. GAMMA: ", G

TI-NSpire Python Script:  gammaten.py

The code is defined as a function.

def gammaten(x):

lten=[9.513507699]

lten.append(4.590843712)

lten.append(2.991568988)

lten.append(2.218159544)

lten.append(1.772453851)

lten.append(1.489192249)

lten.append(1.298055333)

lten.append(1.164229714)

lten.append(1.068628702)

lten.append(1)

#print("gamma(x) to the nearest 0.1")

x=round(x,1)

f=round(10*(x-int(x))-1)

g=1

while x>1:

x-=1

g*=x

g*=lten[f]

return [g,f]

# list[-1] gets last item too

# round integers for accurate results!

# 2022-06-13 EWS

Eddie

All original content copyright, © 2011-2022.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author.

### Casio fx-CG50 and Swiss Micros DM32: HP 16C’s Bit Summation

Casio fx-CG50 and Swiss Micros DM32: HP 16C’s Bit Summation The HP 16C’s #B Function The #B function is the HP 16C’s number of...