Wednesday, March 16, 2022

March Calculus Madness Sweet Sixteen - Day 1: Double Integration

------------


Welcome to March Calculus Madness!


------------


For the two-variable function f(x,y), can we assume that ∫ ∫ f(x,y) dx dy = ∫∫ f(x,y) dy dx?  


Two simple examples:


Equation 1:

∫ ∫ x^2 + y^2 dx dy

= ∫ x^3/3 + y^2 ∙ x + C1 dy

x^3 ∙ y/3 + y^3 ∙ x/3 + C1 ∙ y + C2


Equation 2: 

∫ ∫ x^2 + y^2 dy dx

∫ x^2 ∙ y + y^3/3 + C1 dx

x^3 ∙ y/3 + y^3 ∙ x/3 + C1∙ x + C2


However, for both Equation 1 and Equation 2 to be equal:

x^3 ∙ y/3 + y^3 ∙ x/3 + C1 ∙ y + C2 = x^3 ∙ y/3 + y^3 ∙ x/3 + C1∙ x + C2

C1 ∙ y = C1 ∙ x

y = x


By this example alone, we cannot assume that ∫ ∫ f(x,y) dx dy = ∫∫ f(x,y) dy dx.


Eddie



All original content copyright, © 2011-2022.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 


HHC 2025 Videos

  HHC 2025 Videos The talks from the HHC 2025 conference in Orlando, Florida are starting to be up on hpcalc’s YouTube page within th...