Thursday, March 31, 2022

March Calculus Madness Sweet Sixteen - Day 16: A Parametric Integral Example

 ------------


Welcome to March Calculus Madness!


------------


Let:

x(t) = a * cos t

y(t) = b * sin t


Then:

∫ y(x) dx = ∫ y(t) * x'(t) dt


x'(t) = -a * sin t


And:

∫ y(t) * x'(t) dt

= ∫ -a * sin t * b * sin t dt

= -a * b * ∫ sin^2 t dt

= -a * b * ∫1/2 - 1/2 * cos(2*t) dt

= -a * b * (t/2 - sin(2*t)/4) + C


That wraps up March Calculus Madness 2022.  


Next Post:  April 9, 2022


Have a great day and hope you enjoyed the series!  


Eddie 



All original content copyright, © 2011-2022.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 


RPN: HP 32S & DM42: Converting Real Numbers to Hexadecimal Approximations

RPN: HP 32S & DM42: Converting Real Numbers to Hexadecimal Approximations Introduction We know calculators that have base c...