Wednesday, July 17, 2013

Solving 2^x + 4^x = A

Solve for x:

(I) 2^x + 4^x = A

Let A be any constant.

Then:

Note that 4=2^2. Then 4^x = (2^2)^x = (2^x)^2. Therefore:

(II) 2^x + (2^x)^2 = A

Let u = 2^x.

(III) u + u^2 = A

(IV) u^2 + u - A = 0

Solving the polynomial yields:

(V) u = (-1 ± √(1 + 4*A))/2

With u = 2^x:

(VI) 2^x = (-1 ± √(1 + 4*A))/2

Taking the logarithm of both sides, and with ln(B^C) = C ln B:

(VII) x * ln 2 = ln [ (-1 ± √(1 + 4*A))/2 ]

With ln(B/C) = ln B - ln C

(VIII) x * ln 2 = ln (-1 ± √(1 + 4*A) - ln 2

Solving for x:

(IX) x = [ ln (-1 ± √(1 + 4*A) ] / [ln 2] - 1




A General technique to solving A^x + B^x = C: (assuming B > A)

Let B = A^n. Then:

A^x + (A^x)^n = C

Let u = A^x, then solve the polynomial for u:

u + u^n - C = 0

Once the roots of u are found, then x = ln u/ln n

Solving this equation analytically is best when A, B, and C work "nicely".




Take care everyone, hope this helps and as always appreciate all the feedback!

Eddie



This blog is property of Edward Shore. 2013


Fun with the HP 30b

Fun with the HP 30 b Introduction The following programs are for the HP 30b Business Professional. Did you know that the 30b...