PrgCalcPro: Third Law of Kepler: Approximate Time of Orbit in Years
Formula:
P = √((4*π^2*a^3)/(G*(m1+m2))
P is then divided by 3.15576*10^7 (number of seconds in a Julian year)
Where G = 6.67384*10^-11 m^3/(kg*s^2)
SI units are used
Store in the following registers:
Memory 0 = mass of the sun or star (kg)
Memory 1 = mass of the planet or other astronomical object (kg)
Memory 2 = average distance or semi-major axis (m)
Program:
0: 03 ; 3
1: 62 ; R2
2: 24 ; X^Y // power function has x as the base, y the exponent
3: 04 ; 4
4: 12 ; *
5: 20 ; Pi
6: 22 ; X^2
7: 12 ; *
8: 60 ; R0
9: 61 ; R1
10: 10 ; +
11: 06 ; 6
12: 0A ; .
13: 06 ; 6
14: 07 ; 7
15: 03 ; 3
16: 08 ; 8
17: 04 ; 4
18: 0C ; E // press the [EXT] key
19: 01 ; 1
20: 01 ; 1
21: 0B ; +- // CHS
22: 12 ; *
23: 13 ; /
24: 21 ; sqr // √
25: 03 ; 3
26: 0A ; .
27: 01 ; 1
28: 05 ; 5
29: 05 ; 5
30: 07 ; 7
31: 06 ; 6
32: 0C ; E // [EXT] key
33: 07 ; 7
34: 13 ; /
35: 50 ; STOP
Examples:
Sun, mass = 1.988435*10^30 kg
Earth, mass = 5.972190*10^24 kg
Avg Distance = 1.4959787*10^11 m (1 AU)
Period ≈ 1.000455 years
Sun, mass = 1.988435*10^30 kg
Mars, mass = 6.3902433*10^23 kg
Avg Distance = 2.2798715*10^11 m (1.524 AU)
Period ≈ 1.8814721 years
This blog is property of Edward Shore, 2016.