HP 12C Programming:  Circles, Spheres, and Right Triangle
Links to other HP 12C
Programs:
HP 12C Programming Part I:  Modulus, GCD, PITI:  http://edspi31415.blogspot.com/2016/07/hp-12c-programming-part-i-modulus-gcd.html
HP 12C Programming Part II:
 Weekday Number, Gross Up Calculation: 
http://edspi31415.blogspot.com/2016/07/hp-12c-programming-part-ii-weekday.html
HP 12C Programming III:
Refinancing, Advance Payments in a Lease, NPV, NFV, NUS
HP 12C:  Combination/Binomial
Distribution/Negative Binomial Distribution
If you want on
to calculate the date of Easter and you have the expanded HP 12C Platinum
Edition:
HP 12C Platinum:  Finding the
Day of Easter
Approximating π
The HP-12C does
not have a π key.   We can tackle this in
one of two ways:
* We can input
the full approximation of π until the display no longer accepts numbers, which
is up to 10 numbers.  π typed to screen
capacity is 3.141592654.  Since each
digit entered plus the decimal point takes a step, it will require 11 steps to
enter.
* We can use
the approximation π ≈ 355/113.  355/113 ≈
3.141592920.  355/113 is an accurate
approximation of π to 6 digits.  It will
take a total of 8 steps to enter this approximation.   Since most of the time the HP 12C is used at
Fix 2 mode (2 decimal places), this may be for most practical purposes an
adequate approximation.  Just a
caution:  make number of calculations low
and the factors should be relatively small.
The programs
represented on this blog will use the 355/113 to save space.  If you require a better approximation of π
and have the space, feel free to replace 355/113 with the 3.141592654.
HP 12C:  Circles – Circumference and Area
The program
calculates an approximate circumference and area of a circle given radius r.
C = 2*π*r
A = π*r^2
Here, we take
355/113 as an approximation for π.
| 
STEP | 
CODE | 
KEY | 
| 
01 | 
44, 0 | 
STO 0 | 
| 
02 | 
3 | 
3 | 
| 
03 | 
5 | 
5 | 
| 
04 | 
5 | 
5 | 
| 
05 | 
36 | 
ENTER | 
| 
06 | 
1 | 
1 | 
| 
07 | 
1 | 
1 | 
| 
08 | 
3 | 
3 | 
| 
09 | 
10 | 
÷ | 
| 
10 | 
44, 1 | 
STO 1 | 
| 
11 | 
20 | 
* | 
| 
12 | 
2 | 
2 | 
| 
13 | 
20 | 
* | 
| 
14 | 
31 | 
R/S | 
| 
15 | 
45, 0 | 
RCL 0 | 
| 
16 | 
2 | 
2 | 
| 
17 | 
21 | 
Y^X | 
| 
18 | 
45, 1 | 
RCL 1 | 
| 
19 | 
20 | 
* | 
| 
20 | 
43, 33, 00 | 
GTO 00 | 
Registers used:
R0 = r, R1 =
335/113 ≈ π 
Input:
Enter radius,
r, and press [R/S].
Output:
Obtain the
approximate circumference.  Press [R/S]
for the area.
Examples (FIX
2):
Radius =
2.96.  Results:  Circumference ≈ 18.60, Area ≈ 27.53
Radius =
5.00    Results:  Circumference ≈ 31.42, Area ≈ 78.54
Alternate:  This uses the following shortcuts:
Number,
[ENTER], [ + ] doubles the number.
Number,
[ENTER], [ * ] squares the number.
That and the
use of LST X reduces the number of steps to 19 and only uses one register, R0.
| 
STEP | 
CODE | 
KEY | 
| 
01 | 
44, 0  | 
STO 0 | 
| 
02 | 
36 | 
ENTER | 
| 
03 | 
40 | 
+ | 
| 
04 | 
3 | 
3 | 
| 
05 | 
5 | 
5 | 
| 
06 | 
5 | 
5 | 
| 
07 | 
36 | 
ENTER | 
| 
08 | 
1 | 
1 | 
| 
09 | 
1 | 
1 | 
| 
10 | 
3 | 
3 | 
| 
11 | 
10 | 
÷ | 
| 
12 | 
20 | 
* | 
| 
13 | 
31 | 
R/S | 
| 
14 | 
43, 36 | 
LST X | 
| 
15 | 
45, 0  | 
RCL 0 | 
| 
16 | 
36 | 
ENTER | 
| 
17 | 
20 | 
* | 
| 
18 | 
20 | 
* | 
| 
19 | 
43, 33, 00 | 
GTO 00 | 
Fun fact:  A circle of radius 2 will have the same circumference
and area, approximately 12.56637.                                                                                                                                                                                                                                                                                        
HP 12C:  Sphere – Surface Area and Volume
This program
calculates the surface area and volume of a sphere give the radius r.  Again we take 355/113 as an approximation for
π.  The well-known formulas:
S = 4*π*r^2
V = 4/3*π*r^3 =
S * r/3
| 
STEP | 
CODE | 
KEY | 
| 
01 | 
44, 0 | 
STO 0 | 
| 
02 | 
2 | 
2 | 
| 
03 | 
21 | 
Y^X | 
| 
04 | 
4 | 
4 | 
| 
05 | 
20 | 
* | 
| 
06 | 
3 | 
3 | 
| 
07 | 
5 | 
5 | 
| 
08 | 
5 | 
5 | 
| 
09 | 
36 | 
ENTER | 
| 
10 | 
1 | 
1 | 
| 
11 | 
1 | 
1 | 
| 
12 | 
3 | 
3 | 
| 
13 | 
10 | 
÷ | 
| 
14 | 
20 | 
* | 
| 
15 | 
31 | 
R/S | 
| 
16 | 
3 | 
3 | 
| 
17 | 
10 | 
÷ | 
| 
18 | 
45, 0 | 
RCL 0 | 
| 
19 | 
20 | 
* | 
| 
20 | 
43, 33, 00 | 
GTO 00 | 
Registers used:
R0 = r
Input:
Enter radius,
r, and press [R/S].
Output:
Obtain the
approximate surface area.  Press [R/S]
for the volume.
Examples:
Radius =
2.  Surface area ≈ 50.27, Volume ≈ 33.51
Radius =
8.64.  Surface area ≈ 938.07, Volume ≈
2701.65
Fun fact:  A sphere of radius 3 will have the same
surface area and volume, at approximately 113.09734.        
HP 12C:  Right Triangles – Area, Hypotenuse, and Grade
given Rise and Run
Let y be the
rise (height) and x be the run (length) of a right triangle.  Then:
Area = 1/2 * x
* y
Hypotenuse = √(x^2
+ y^2)
Grade = y/x *
100%   (like slope)
| 
STEP | 
CODE | 
KEY | 
| 
01 | 
44, 1 | 
STO 1 | 
| 
02 | 
34 | 
X<>Y | 
| 
03 | 
44, 0 | 
STO 0 | 
| 
04 | 
20 | 
* | 
| 
05 | 
2 | 
2 | 
| 
06 | 
10 | 
÷ | 
| 
07 | 
31 | 
R/S | 
| 
08 | 
45, 1 | 
RCL 1 | 
| 
09 | 
2 | 
2 | 
| 
10 | 
21 | 
Y^X | 
| 
11 | 
45, 0 | 
RCL 0 | 
| 
12 | 
2 | 
2 | 
| 
13 | 
21 | 
Y^X | 
| 
14 | 
40 | 
+ | 
| 
15 | 
43, 21 | 
√ | 
| 
16 | 
31 | 
R/S | 
| 
17 | 
45, 0 | 
RCL 0 | 
| 
18 | 
45, 1 | 
RCL 1 | 
| 
19 | 
10 | 
÷ | 
| 
20 | 
1 | 
1 | 
| 
21 | 
26 | 
EEX | 
| 
22 | 
2 | 
2 | 
| 
23 | 
20 | 
* | 
| 
24 | 
43, 33, 00 | 
GTO 00 | 
Registers Used:
R0 = rise (y),
R1 = run (x)
Input:  rise [ENTER] run [R/S],  height [ENTER] length [R/S]
Output:  area of a triangle [R/S], hypotenuse [R/S], grade
Example:  rise = 430, run = 1600
Input:  430 [ENTER] 1600 [R/S]
Results:  Area: 344000, Hypotenuse: 1656.77, Grade:
26.88 (%)
I hope you find
this helpful.  Can you believe it is
already October?  How fast time flies,
Eddie
This blog is
property of Edward Shore, 2016.


