Casio fx3650p and HP
21S: 3D Vectors: Dot Products and Angle
The
following program computes the dot product two threedimension vectors and the
angle between them. Degrees mode is
set.
Casio fx3650P
Input: [A, B, C] and [X, Y, D]
Program
(66 steps):
Deg
: ? → A : ? → B : ? → C :
? →
X : ? → Y : ? → D :
AX
+ BY + CD → M ◢
√ (
A^2 + B^2 + C^2 :
Ans
√ ( X^2 + Y^2 + D^2 :
cos^1
( M ÷ Ans ◢
HP 21S
Input: [R1, R2, R3] and [R4, R5, R6]. Store the amounts before running the program
(XEQ B)
Program
(47 steps):
Step

Code

Key

Notes

01

61, 41, B

LBL B

Beginning
of program

02

61, 23

DEG

Set
degrees mode

03

22, 1

RCL 1

Calculate
dot product

04

55

*


05

22, 4

RCL 4


06

75

+


07

22, 2

RCL 2


08

55

*


09

22, 5

RCL 5


10

75

+


11

22, 3

RCL 3


12

55

*


13

22, 6

RCL 6


14

74

=


15

21, 0

STO 0


16

26

R/S

Display
dot product

17

22, 1

RCL 1

Calculate
angle

18

51, 11

x^2


19

75

+


20

22, 2

RCL 2


21

51, 11

x^2


22

75

+


23

22, 3

RCL 3


24

51, 11

x^2


25

74

=


26

11

√


27

74

=


28

22, 4

RCL 4


29

51, 11

x^2


30

75

+


31

22, 5

RCL 5


32

51, 11

x^2


33

75

+


34

22, 6

RCL 6


35

51, 11

x^2


36

34

)


37

11

√


38

55

*


39

51, 74

LAST


40

74

=


41

22, 0

RCL 0


42

45

÷


43

51, 74

LAST


44

74

=


45

51, 24

ACOS


46

21, 7

STO 7


47

61, 26

RTN

End
program

The
key strokes for the HP 20S is similar.
Example: [1, 2, 4]; [3, 7, 6]
Results:
Dot
= 13
Angle
= 72.98650490190°
Eddie
This
blog is property of Edward Shore, 2017
No comments:
Post a Comment