Sunday, August 23, 2020

Using Grand Total and Independent Memory for Complex Invoicing

Using Grand Total and Independent Memory for Complex Invoicing 

Introduction

Portable desktop (usually solar powered) calculators usually have at least two memory registers:  independent memory (M) and grand total (GT).  

Adding calculations to the independent memory by pressing the memory plus key    [ M+ ].  

Adding calculations to the grand total by pressing the equals key [ = ]. 

Invoice with Taxable and Nontaxable Items

We have an invoice that has items that are subject to sales tax, and items and services that are exempt from sales tax. 

Take advantage of both the independent and grand total memories to calculate the total invoice.

Two approaches:

[ ON/C ] to clear the grand total memory
[ MC ] (or press [ MRC ] until the independent memory is cleared) 

Method 1: 
taxable items [ M+ ]
nontaxable items [ = ]

After finishing entering all the items, add sales tax:
[ MR ] [ × ] sales tax rate [ % ] [ M+ ]

Calculate the total invoice:
[ MR ] [ = ] [ GRAND TOTAL ]

Method 2:
taxable items [ = ]
nontaxable items [ M+ ]

After finishing entering all the items, add sales tax:
[ GRAND TOTAL ] [ × ] sales tax rate [ % ] [ = ]

Calculate the total invoice:
[ MR ] [ = ] [ GRAND TOTAL ]

The example will use Method 1.

An Example of an Invoice

Taxable Items:
$ 19.99
$ 39.96
$ 14.97

Nontaxable Items:  
$ 109.00
$  15.00

Sales Tax Rate:  9% 

As long as you keep your designation of what memory registers are used, you can enter each item in any order.  So both methods should work.

[ AC/ON ] [ MC ]
109 [ = ]
15 [ = ]
19.99 [ M+ ] 
39.96 [ M+ ]
14.97 [ M+ ]
[ MR ] [ × ] 9 [ % ] [ M+ ] 
[ MR ] [ = ] 
[ GRAND TOTAL ]

Result:  205.6628

[ AC/ON ] [ MC ]
109 [ = ]
19.99 [ M+ ] 
15 [ = ]
39.96 [ M+ ]
14.97 [ M+ ]
[ MR ] [ × ] 9 [ % ] [ M+ ] 
[ MR ] [ = ] 
[ GRAND TOTAL ]

Result:  205.6628

Invoice:  $205.66

The calculators I used for this example are the Casio JF-100BM and Casio MC-12M Shop Calculator.  

Eddie

All original content copyright, © 2011-2020.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 

1 comment:

  1. The [M+] or [M-] memory is useful to find the Remainder after Division.
    For example:
    If a products fit 150 items in a box and the machine produces this products in a lot of 15700 What is the remaining product after put all in the box.

    Solution is by using this modulo method by 15700 mod 150

    Steps:
    First input 150 to memory I will put in [M+]

    150 [M+]
    15700 [÷] [MRC] [-] display shown 104.6666....(Keep Integer Part)
    104 [x] [MRC] [=] display shown 99.9999.... (Round Up Interger Part)

    Answer is 100
    Remark: For each new problem make sure to clear the memory

    ReplyDelete

Σ(1 / (a^n)) from n=1 to m

 Σ(1 / (a^n)) from n=1 to m This blog entry covers the sum of the series: Σ[1 / (a^n), n=1 to m] with n and m positive integers Specific Cas...