Saturday, May 21, 2022

Swiss Micros DM41X and HP 41C: Numeric Derivatives

Swiss Micros DM41X and HP 41C:  Numeric Derivatives


Introduction


The program DFX calculates one of three types of derivative:


1.  Normal Derivative   (DX)

2.  Logarithmic Derivative (LN)

3.  Power Derivative (PWR)


Where:


Normal Derivative:  f'(x)


Logarithmic Derivative:  d/dx( ln f(x) ) = f'(x) / f(x)  


Power Derivative:  d/dx( f^n(x) ) = n * f^(n-1)(x) * f'(x),  n doesn't have to be an integer


where f'(x) is estimated by:


f'(x) ≈ ( f(x + h) - f(x) ) / h


Variables:  x, h


The program uses a subroutine FX, see the examples for details.  


DM41X and HP 41C Program:  DFX


Uses program FX as a subroutine as f(x).


01 LBL ^T FX

02 RCL 01

03 ^T X?

04 ARCL 01

05 PROMPT

06 STO 01

07 RCL 02

08 ^T H?

09 ARCL 02

10 PROMPT

11 STO 02

12 RCL 01

13 XEQ ^T FX

14 RCL 03

15 RCL 01

16 RCL 02

17 +

18 XEQ ^T FX

19 RCL 03

20 -

21 RCL 02

22 /

23 STO 04

24 ^T 1 DX 2 LN 3 ↑N

25 PROMPT

26 INT

27 STO 05

28 GTO IND 05


29 LBL 01

30 RCL 04 


31 LBL 02

32 RCL 04

33 RCL 03

34 / 

35 GTO 04


36 LBL 03

37 RCL 03

38 ^T N?

39 PROMPT

40 1

41  - 

42 Y↑X

43 LASTX

44 1

43 +

44 *

45 RCL 04

46 *


50 LBL 04

51 RTN



The function FX:


x is loaded in the X stack register (and on display)


01 LBL ^FX

02  execute f(x)

...

##  RTN


For DFX, do not use R01, R02, R03, R04, and R05 in FX.  


Notes:


Sequences such as:

02 RCL 01

03 ^T X?

04 ARCL 01

05 PROMPT


Puts the prompt as X? [contents of R1].   If you want the previous value, press R/S.  Otherwise enter a new value, then press R/S.


This program uses indirect goto statements.  R05 is used to hold the person's choice and uses it to direct which label is executed.


Examples


Example 1:  f(x) = x * sin x


Set FX as:

01 LBL^T FX

02 RAD

03 ENTER

04 ENTER

05 SIN

06 * 

07 RTN


Setting H to 10^-6  (1E-6):


DF:   f'(x)

x = 0.5, Result:  0.9182; x = 1.6, Result: 0.9530


LN:  ln f'(x)

x = 0.5, Result:  3.8305; x = 1.6, Result:  0.5959


PWR: with n = 3,   (f'(x))^3

x = 0.5; Result:  0.1583; x = 1.6;  Result: 7.3128



Example 2:  f(x) = x^2 + 3 * x + 1 = x * (x + 3) + 1


Set FX as:

01 LBL^T FX

02 ENTER

03 ENTER

04 3

05 +

06 *

07 1

08 + 

09 RTN


Setting H to 10^-6  (1E-6):


DF:   f'(x)

x = 3.2, Result:  9.4000; x = 6.8, Result: 16.6000


LN:  ln f'(x)

x = 3.2, Result:  0.4511; x = 6.8, Result: 0.2454


PWR: with n = 1.5,   (f'(x))^1.5

x = 3.2, Result:  64.3677; x = 6.8, Result: 204.7864



Until next time, 


Eddie


All original content copyright, © 2011-2022.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 


TI-30Xa Algorithms: RLC Series Circuit

TI-30Xa Algorithms: RLC Series Circuit The task is to calculate the total impedance and phase angle for an RLC circuit in a series. An...