Tuesday, July 1, 2014

Parabolic Hourglass

Let the above picture represent a "parabolic hourglass", where the two bulbs are outlined by a parabolic curve. Assume that each of the bulb is equal in size.

To calculate the volume of the parabolic hourglass, first calculate the volume of one of the two bulbs. The total volume of the parabolic hourglass is twice the volume of a bulb.

Examining one of the bulbs, suppose the edge of the bulb can be described by the equation y = x^2 - b. See the diagram below, where we impose a cross section of the bulb on the Cartesian plane.

Note that:

(1) The small art of the bulb is placed on the x-axis, and

(2) The origin (point (0,0)) is placed in the center of the base.

To calculate the volume, we are going to use the Disc Integration Method with the discs rotating around the y-axis. The general formula for this method with y-axis
(x = 0) as the axis of rotation is:

d
∫ (r(y))^2 dy * π
c

We have the following constraints:

Upper: y = h
Lower: y = 0
Left: x = 0
Right: x = √(y + b)

And r(y) = √(y + b) - 0 = √(y + b)

With c = 0 and d = h, the volume of one bulb is:

h
∫ (√(y + b))^2 dy * π
0

h
∫ y + b dy * π
0

h
[ y^2/2 + b*y ] * π
0

π * (h^2/2 + b*h) (I)

If we want to determine the volume of the bulb in terms of a (outer radius), use the equation y = x^2 + b and the point (a, h) to determine that:

h = a^2 - b

b = a^2 - h (II)

Substitute equation (II) into (I) to get:

π * (h^2/2 + a^2 * h - h^2)

π * (a^2 * h - h^2/2) (III)

Remember that this the volume of one bulb. The parabolic hourglass consists of two equally sized bulbs.


Therefor the volume of the parabolic hourglass is:

V = 2 * π * (h^2/2 + b * h) = 2 * π * (a^2 * h - h^2/2)




Eddie


This blog is property of Edward Shore. 2014

BA-54: Real Estate Programs

BA-54: Real Estate Programs BA-54:  Chris won this calculator at HHC 2024 and donated it to me.   Much appreciation as always.  ...